1.已知向量$\overrightarrow a=(1,\sqrt{3}),\overrightarrow b=(0,1)$,則$\overrightarrow a$在$\overrightarrow b$方向上的投影是$\sqrt{3}$.

分析 求出|$\overrightarrow{a}$|,|$\overrightarrow$|,及夾角的余弦值,代入投影公式計(jì)算.

解答 解:設(shè)$\overrightarrow{a},\overrightarrow$的夾角為θ,則cosθ=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}||\overrightarrow|}$=$\frac{\sqrt{3}}{2•1}$=$\frac{\sqrt{3}}{2}$,
∴$\overrightarrow a$在$\overrightarrow b$方向上的投影為|$\overrightarrow{a}$|cosθ=2$•\frac{\sqrt{3}}{2}$=$\sqrt{3}$.
故答案為:$\sqrt{3}$.

點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.高為4的直三棱柱被削去一部分后得到一個(gè)幾何體,它的直觀圖和三視圖中的側(cè)視圖、俯視圖如圖所示,則該幾何體的體積是原直三棱柱的體積的$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若平面內(nèi)有n(n≥4)個(gè)點(diǎn),滿足任意三點(diǎn)都不共線,且任意兩點(diǎn)構(gòu)成的向量與其余任意兩點(diǎn)構(gòu)成的向量的數(shù)量積為0,則n的最大值為( 。
A.3B.4C.5D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.閱讀程序框圖如圖所示,若輸入x=4,則輸出y的值為496.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.拋物線$x=\frac{1}{4}{y^2}$的焦點(diǎn)到雙曲線x2-y2=2的漸近線的距離是( 。
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{2}}}{32}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在如圖所示的四棱錐P-ABCD中,底面ABCD為矩形,側(cè)棱PD⊥底面ABCD,且PD=CD=2,點(diǎn)E為PC的中點(diǎn),連接DE,BD,BE.
(1)證明:PA∥平面DBE;
(2)若直線BD與平面PBC所成角的為30°,求點(diǎn)E到平面PDB的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.如圖所示,正方體ABCD-A1B1C1D1的棱長(zhǎng)為a,M,N分別為A1B和AC上的點(diǎn),A1M=AN=$\frac{\sqrt{2}a}{3}$,則MN與平面BB1C1C的位置關(guān)系是( 。
A.相交B.平行C.垂直D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.i為虛數(shù)單位,復(fù)數(shù)$\frac{{{i^{2015}}}}{i+1}$在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離為(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.1D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知冪函數(shù)f(x)=x${\;}^{({m}^{2}+m)^{-1}}$(m∈N+)經(jīng)過(guò)點(diǎn)(2,$\sqrt{2}$),試確定m的值,并滿足條件f(2-a)>f(a-1)的實(shí)數(shù)a的取值范圍$[1,\frac{3}{2})$.

查看答案和解析>>

同步練習(xí)冊(cè)答案