設等差數(shù)列{an}的前n項和Sn=2n2,在數(shù)列{bn}中,b1=1,bn+1=3bn(n∈N*
(Ⅰ)求數(shù)列{an}和{bn}的通項公式;
(Ⅱ)設cn=an•bn,求數(shù)列{cn}前n項和Tn
(Ⅰ)當n≥2時,an=Sn-Sn-1=4n-2,
當n=1時,a1=S1=2,也符合上式,
∴an=4n-2,
∵b1=1,bn+1=3bn,∴bn=1•3n-1=3n-1
(Ⅱ)cn=anbn=2(2n-1)•3n-1,
∴Tn=c1+c2+c3+…cn=2+6•31+10•32+…+(2n-1)•3n-1①,
3Tn=2•31+6•32+…+(2n-1)•3n②,
①-②整理可得,Tn=(2n-2)•3n+2.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的前n項和為Sn.若S2k=72,且ak+1=18-ak,則正整數(shù)k=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•山東)設等差數(shù)列{an}的前n項和為Sn,且S4=4S2,a2n=2an+1.
(1)求數(shù)列{an}的通項公式;
(2)設數(shù)列{bn}的前n項和為TnTn+
an+12n
(λ為常數(shù)).令cn=b2n(n∈N)求數(shù)列{cn}的前n項和Rn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的前n項之和為Sn滿足S10-S5=20,那么a8=
4
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的前n項和為Sn,已知(a4-1)3+2012(a4-1)=1,(a2009-1)3+2012(a2009-1)=-1,則下列結論中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的前n項和為Sn,若S9=81,S6=36,則S3=( 。

查看答案和解析>>

同步練習冊答案