【題目】已知點(diǎn)是拋物線上一點(diǎn),點(diǎn)為拋物線的焦點(diǎn),.

1)求直線的方程;

2)若直線與拋物線的另一個(gè)交點(diǎn)為,曲線在點(diǎn)與點(diǎn)處的切線分別為,直線相交于點(diǎn),求點(diǎn)的坐標(biāo).

【答案】1;(2

【解析】

1)利用拋物線焦半徑公式可求得拋物線方程和焦點(diǎn)坐標(biāo),進(jìn)而求得點(diǎn)坐標(biāo);由直線兩點(diǎn)式方程可整理得到直線的一般式方程;

2)聯(lián)立直線方程與拋物線方程可求得點(diǎn)坐標(biāo),假設(shè)切線方程,與拋物線方程聯(lián)立后可利用求出切線方程,兩條切線方程聯(lián)立即可求得交點(diǎn)坐標(biāo).

(1),,解得:,

拋物線的方程為,,

為拋物線上一點(diǎn),,又,,

直線的方程為,即.

(2)聯(lián)立得:,解得:

,

設(shè),聯(lián)立得:

得:,

直線的方程為:,即.

同理可求得直線的方程為:.

得:,即點(diǎn)的坐標(biāo)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓O的直徑,C是半圓O上除A,B外的一個(gè)動(dòng)點(diǎn),DC垂直于半圓O所在的平面,DCEB,DCEB1,AB4.

1)證明:平面ADE⊥平面ACD;

2)當(dāng)C點(diǎn)為半圓的中點(diǎn)時(shí),求二面角DAEB的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市一中學(xué)高三年級(jí)統(tǒng)計(jì)學(xué)生的最近20次數(shù)學(xué)周測(cè)成績(jī)(滿分150分),現(xiàn)有甲乙兩位同學(xué)的20次成績(jī)?nèi)缜o葉圖所示:

1)根據(jù)莖葉圖求甲乙兩位同學(xué)成績(jī)的中位數(shù),并據(jù)此判斷甲乙兩位同學(xué)的成績(jī)誰更好?

2)將同學(xué)乙的成績(jī)的頻率分布直方圖補(bǔ)充完整;

3)現(xiàn)從甲乙兩位同學(xué)的不低于140分的成績(jī)中任意選出2個(gè)成績(jī),設(shè)選出的2個(gè)成績(jī)中含甲的成績(jī)的個(gè)數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右頂點(diǎn)為,離心率為,點(diǎn)在橢圓上,點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對(duì)稱.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)求經(jīng)過點(diǎn),且和軸相切的圓的方程;

3)若,是橢圓上異于的兩個(gè)點(diǎn),且,點(diǎn)在直線的上方,試判斷的平分線是否經(jīng)過軸上的一個(gè)定點(diǎn)?若是,求出該定點(diǎn)坐標(biāo);若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020年春,新型冠狀病毒在我國(guó)湖北武漢爆發(fā)并訊速蔓延,病毒傳染性強(qiáng)并嚴(yán)重危害人民生命安全,國(guó)家衛(wèi)健委果斷要求全體人民自我居家隔離,為支援湖北武漢新型冠狀病毒疫情防控工作,各地醫(yī)護(hù)人員紛紛逆行,才使得病毒蔓延得到了有效控制.某社區(qū)為保障居民的生活不受影響,由社區(qū)志愿者為其配送蔬菜、大米等生活用品,記者隨機(jī)抽查了男、女居民各100名對(duì)志愿者所買生活用品滿意度的評(píng)價(jià),得到下面的2×2列聯(lián)表.

特別滿意

基本滿意

80

20

95

5

1)被調(diào)查的男性居民中有5個(gè)年輕人,其中有2名對(duì)志愿者所買生活用品特別滿意,現(xiàn)在這5名年輕人中隨機(jī)抽取3人,求至多有1人特別滿意的概率.

2)能否有99%的把握認(rèn)為男、女居民對(duì)志愿者所買生活用品的評(píng)價(jià)有差異?

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量.

1)求f(x)的單調(diào)遞增區(qū)間;

2)在△ABC中,角A,BC的對(duì)邊分別為a,bc,且,若f(A)=1,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】嫦娥四號(hào)月球探測(cè)器于2018128日搭載長(zhǎng)征三號(hào)乙運(yùn)載火箭在西昌衛(wèi)星發(fā)射中心發(fā)射.12日下午4點(diǎn)43分左右,嫦娥四號(hào)順利進(jìn)入了以月球球心為一個(gè)焦點(diǎn)的橢圓形軌道,如圖中③所示,其近月點(diǎn)與月球表面距離為100公里,遠(yuǎn)月點(diǎn)與月球表面距離為400公里,已知月球的直徑約為3476公里,對(duì)該橢圓有下述四個(gè)結(jié)論:

1)焦距長(zhǎng)約為300公里;

2)長(zhǎng)軸長(zhǎng)約為3988公里;

3)兩焦點(diǎn)坐標(biāo)約為;

4)離心率約為

其中正確結(jié)論的個(gè)數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

1)討論函數(shù)上的單調(diào)性;

2)若,當(dāng)時(shí),,且有唯一零點(diǎn),證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求的普通方程和的直角坐標(biāo)方程;

2)若直線相切于第二象限的點(diǎn),與交于,兩點(diǎn),且,求直線的傾斜角.

查看答案和解析>>

同步練習(xí)冊(cè)答案