設(shè),試問是否存在實數(shù),使成立?如果存在,求出;如果不存在,請寫出證明.
存在使得
解:假設(shè)成立.
,

解得
所以存在使得.理由即為解答過程.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖5:正方體ABCD-A1B1C1D1,過線段BD1上一點P(P平面ACB1)作垂直于D1B的平面分別交過D1的三條棱于E、F、G.
(1)求證:平面EFG∥平面A CB1,并判斷三角形類型;
(2)若正方體棱長為a,求△EFG的最大面積,并求此時EF與B1C的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,平面平面,且四邊形為矩形,四邊形為直角梯形,,,
(1)求證平面;(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
在平行四邊形中,,.將沿折起,使得平面平面,如圖.

(1)求證: ;
(2)若中點,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為AB與BB1的中點,

(Ⅰ)求證:EF⊥平面A1D1B ;
(Ⅱ)求二面角F-DE-C大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四面體兩兩垂直,的中點,的中點.
(1)建立適當(dāng)?shù)淖鴺?biāo)系,寫出點的坐標(biāo);
(2)求與底面所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示的多面體是由底面為的長方體被截面所截而得到的,其中
(1)求;
(2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,正方體ABCD-A1B1C1D1,M為AA1的中點,N為A1B1上的點,且滿足A1N=NB1,P為底面正方形A1B1C1D1的中心.求證:MN⊥MC,MP⊥B1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,AF、DE分別是⊙O、⊙O1的直徑,AD與兩圓所在的平面均垂直,AD=8.BC是⊙O的直徑,AB=AC=6,
OE∥AD.
(1)求二面角B-AD-F的大小;
(2)求直線BD與EF所成的角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案