13.已知集合$M=\left\{{y|y={x^2}-2\;,\;\;x∈R}\right\}\;,\;\;N=\left\{{x|y=\sqrt{x+1}\;,\;\;x∈R}\right\}$,則M∩N={z|z≥-1}.

分析 首先化簡集合A,B,由交集的含義,即可得到所求.

解答 解:集合$M=\left\{{y|y={x^2}-2\;,\;\;x∈R}\right\}\;,\;\;N=\left\{{x|y=\sqrt{x+1}\;,\;\;x∈R}\right\}$,
可得M={y|y≥-2},N={x|x≥-1},
則M∩N={z|z≥-1}.
故答案為:{z|z≥-1}.

點(diǎn)評 本題考查集合的運(yùn)算,注意集合中代表元素的含義,交集的定義,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)滿足:2f(x)•f(y)=f(x+y)+f(x-y),f(1)=$\frac{1}{2}$,且f(x)在[0,3]上單調(diào)遞減,則方程f(x)=$\frac{1}{2}$在區(qū)間[-2014,2014]內(nèi)根的個數(shù)為1343.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.存在函數(shù)f(x)滿足對于任意x∈R都有( 。
A.f(|x|)=x+1B.f(x2)=2x+1C.f(|x|)=x2+2D.f($\sqrt{x}$)=3x+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.定義區(qū)間(a,d),[a,d),(a,d],[a,d]的長度為d-a(d>a),已知a>b,則滿足$\frac{1}{x-a}+\frac{1}{x-b}≥1$的x構(gòu)成的區(qū)間的長度之和為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)0<b<1+a,若關(guān)于x的不等式(x-b)2>(ax)2的解集中的整數(shù)解恰有4個,則實(shí)數(shù)a的取值范圍是1<a<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某工廠生產(chǎn)甲、乙兩種產(chǎn)品所得利潤分別為P和Q(萬元),它們與投入資金m(萬元)的關(guān)系有經(jīng)驗(yàn)公式P=$\frac{1}{3}$m+65,Q=76+4$\sqrt{m}$,今將150萬元資金投入生產(chǎn)甲、乙兩種產(chǎn)品,并要求對甲、乙兩種產(chǎn)品的投資金額不低于25萬元.
(1)設(shè)對乙產(chǎn)品投入資金x萬元,求總利潤y(萬元)關(guān)于x的函數(shù)關(guān)系式及其定義域;
(2)如何分配使用資金,才能使所得總利潤最大?最大利潤為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知f(x)=ex,g(x)=lnx,若f(t)=g(s),則當(dāng)s-t取得最小值時,f(t)所在區(qū)間是(  )
A.(ln2,1)B.($\frac{1}{2}$,ln2)C.($\frac{1}{3}$,$\frac{1}{e}$)D.($\frac{1}{e}$,$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.定義在R上的偶函數(shù)f(x)的圖象關(guān)于點(diǎn)(1,0)對稱,且當(dāng)x∈[1,2]時,f(x)=-2x+2,若函數(shù)y=f(x)-loga(|x|+1)恰好有8個零點(diǎn),則實(shí)數(shù)a的取值范圍是$(\frac{{\sqrt{11}}}{11},\frac{{\sqrt{7}}}{7})∪\left\{3\right\}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{1-sinπx,-2≤x<0}\\{(\frac{1}{9})^{x},x≥0}\end{array}\right.$,若關(guān)于x的方程f(x)-a=0有三個不等實(shí)根x1,x2,x3,且x1+x2+x3=-$\frac{5}{2}$,則a=$\frac{1}{3}$.

查看答案和解析>>

同步練習(xí)冊答案