某銀行準(zhǔn)備新設(shè)一種定期存款業(yè)務(wù),經(jīng)預(yù)測(cè),存款量與存款利率成正比,比例系數(shù)為k (k>0),貸款的利率為4.8%,假設(shè)銀行吸收的存款能全部放貸出去.若存款利率為x(x∈(0,0.048)),則存款利率為多少時(shí),銀行可獲得最大利益( 。
A、0.012
B、0.024
C、0.032
D、0.036
考點(diǎn):根據(jù)實(shí)際問(wèn)題選擇函數(shù)類(lèi)型
專(zhuān)題:應(yīng)用題,導(dǎo)數(shù)的綜合應(yīng)用
分析:建立起關(guān)于收益的函數(shù),利用函數(shù)取最大值時(shí),求得相應(yīng)的x的值,即為使銀行獲得最大收益的存款利率.
解答: 解:用y表示收益,由設(shè)存款量是kx2,利率為x,貸款收益為0.048kx2
則收益y=0.048kx2-kx3,x∈(0,0.048),
∵y′=0.096x-3kx2=3kx(0.032-x)
∴當(dāng)y′>0,0<x<0.032
當(dāng)y′<0,0.032<x<0.048
故收益y在x=0.032時(shí)取得最大值
則為使銀行收益最大,應(yīng)把存款利率定為0.032.
故選C.
點(diǎn)評(píng):本題主要考查函數(shù)在實(shí)際生活中的應(yīng)用、導(dǎo)數(shù)求最值的方法等,解決實(shí)際問(wèn)題通常有四個(gè)步驟:(1)閱讀理解,認(rèn)真審題;(2)引進(jìn)數(shù)學(xué)符號(hào),建立數(shù)學(xué)模型;(3)利用數(shù)學(xué)的方法,得到數(shù)學(xué)結(jié)果;(4)轉(zhuǎn)譯成具體問(wèn)題作出解答,其中關(guān)鍵是建立數(shù)學(xué)模型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在空間內(nèi),下列命題是否成立,若成立,給予證明,不成立,給予反例.
(1)α,β,γ為空間三平面,若α⊥β,β⊥γ,則α∥γ;
(2)α,β為平面,a為直線.若a⊥α,a⊥β,則α∥β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線C的參數(shù)方程為
x=2cosθ
y=3sinθ
直線l:
x=2+t
y=2-2t
(t為參數(shù)).
(Ⅰ)寫(xiě)出曲線C與直線l的普通方程;
(Ⅱ)過(guò)曲線C上任一點(diǎn)P作與l夾角為60°的直線,交l于點(diǎn)A,求|PA|的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x2-3在點(diǎn)(-1,-2)處切線的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,設(shè)向量
AB
=
a1
,
BC
=
a2
DA
=
a3
,
CD
=
a4
滿(mǎn)足
a1
+
a2
+
a3
+
a4
=
0
,且
an
=(xn,yn)
,數(shù)列{xn},{yn}分別是等差數(shù)列、等比數(shù)列,則四邊形ABCD是( 。
A、平行四邊形B、矩形
C、梯形D、菱形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(x-
π
2
)(x∈R),下面命題中,真命題是
 

(1)函數(shù)f(x)的最小正周期為2π;
(2)函數(shù)f(x)在區(qū)間[0,
π
2
]上是增函數(shù);
(3)函數(shù)f(x)的圖象關(guān)于直線x=0對(duì)稱(chēng);
(4)函數(shù)f(x)是奇函數(shù);
(5)函數(shù)f(x)的圖象是將y=sinx向左平移
π
2
個(gè)單位得到的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓
x2
9
+
y2
5
=1的焦距是( 。
A、3
B、6
C、2
5
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-5x+3-
k(x-1)
ex
,g(x)=-x+xlnx(k∈R),若對(duì)于?x1∈(1,+∞),?x2∈(0,+∞)都有f(x1)≥g(x2)成立,則k的取值范圍( 。
A、(-∞,
1
e3
]
B、(-∞,-e3]
C、(-∞,-e]
D、(-∞,
1
e
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)是定義在R上的函數(shù),且圖象關(guān)于原點(diǎn)對(duì)稱(chēng),若f(m)•f(-m)=-4,f(m)>0,則log8f(m)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案