【題目】已知是拋物線的焦點,點是拋物線上一點,且.

(1)求的值;

(2)過點作兩條互相垂直的直線,與拋物線的另一交點分別是.

①若直線的斜率為,求的方程;

的面積為12,求的斜率.

【答案】1(2)①

【解析】

1)直接利用拋物線方程,結(jié)合定義求p的值;然后求解t;
2)①直線AB的斜率為,設(shè)出方程,A、B坐標(biāo),與拋物線聯(lián)立,然后求AB的方程;
②求出三角形的面積的表達式,結(jié)合△ABC的面積為12,求出m,然后求AB的斜率.

解:(1)由拋物線定義得,

,

2)設(shè)方程為,

與拋物線方程聯(lián)立得

由韋達定理得:,即

類似可得

①直線的斜率為,,

當(dāng)時,方程為,

此時直線的方程是。同理,當(dāng)時,直線的方程也是,

綜上所述:直線的方程是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為定義域R上的奇函數(shù),且在R上是單調(diào)遞增函數(shù),函數(shù),數(shù)列為等差數(shù)列,且公差不為0,若,則( )

A. 45B. 15C. 10D. 0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,錯誤的是( )

A. 若命題,,則命題,

B. ”是“”的必要不充分條件

C. “若,則、中至少有一個不小于”的逆否命題是真命題

D. ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:關(guān)于x的方程x2﹣ax+4=0有實根;命題q:關(guān)于x的函數(shù)y=2x2+ax+4[3+∞)上是增函數(shù),若“pq”是真命題,“pq”是假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)名著《九章算術(shù)》中記載的芻甍chu meng)是指底面為矩形,頂部只有一條棱的五面體.如圖,五面體是一個芻甍,其中是正三角形,,則以下兩個結(jié)論:①;②,(

A.①和②都不成立B.①成立,但②不成立

C.①不成立,但②成立D.①和②都成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,橫坐標(biāo)、縱坐標(biāo)均為整數(shù)的點稱為整點,如果函數(shù)的圖象恰好通過個整點,則稱函數(shù)階整點函數(shù).有下列函數(shù):

;

其中是一階整點函數(shù)的是( )

A. ①②③④ B. ①③④ C. ①④ D. ④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,頂點到直線的距離為,橢圓內(nèi)接四邊形(點在橢圓上)的對角線相交于點,且.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)的內(nèi)角所對的邊為,則下列命題正確的是_____

①若,則 ②若,

③若,則 ④若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為,(為參數(shù)),直線的參數(shù)方程為為參數(shù),為實數(shù)),直線與曲線交于 兩點.

(1)若,求的長度;

(2)當(dāng)面積取得最大值時(為原點),求的值.

查看答案和解析>>

同步練習(xí)冊答案