已知等差數(shù)列{an}中,a1+a99=20,則
12
a50+a20+a80
=
 
分析:由數(shù)列為等差數(shù)列,利用等差數(shù)列的性質(zhì)得到a1+a99=2a50,將已知a1+a99=20代入求出a50的值,然后再利用等差數(shù)列的性質(zhì)化簡所求式子的后兩項(xiàng),將a50的值代入即可求出值.
解答:解:∵等差數(shù)列{an}中,a1+a99=20,
∴a1+a99=2a50=20,即a50=10,
又a20+a80=2a50,
1
2
a50+a20+a80

=
1
2
a50+(a20+a80)

=
1
2
a50+2a50=
5
2
a50
=
5
2
×10=25.
故答案為:25
點(diǎn)評:此題考查了等差數(shù)列的性質(zhì),熟練掌握等差數(shù)列的性質(zhì)是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列;
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn=an3n-1,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足:a5=11,a2+a6=18.
(1)求{an}的通項(xiàng)公式;
(2)若bn=an+q an(q>0),求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
(1)求數(shù)列{an}的通項(xiàng)公式;     
(2)求數(shù)列{|an|}的前n項(xiàng)和;
(3)求數(shù)列{
an2n-1
}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知等差數(shù)列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若{an}為遞增數(shù)列,請根據(jù)如圖的程序框圖,求輸出框中S的值(要求寫出解答過程).

查看答案和解析>>

同步練習(xí)冊答案