分析 根據(jù)題意,設投放A型號單車x輛,B型號單車y輛,單車公司可獲得的總收入為Z;分析可得$\left\{\begin{array}{l}{x+y≤100}\\{500x+3000y≤100000}\\{x≥0,x∈Z}\\{y≥0,y∈Z}\end{array}\right.$,且Z=2×0.5x+2×y=x+2y,化簡不等式組表示的平面區(qū)域,分析可得Z的最大值,即可得答案.
解答 解:根據(jù)題意,設投放A型號單車x輛,B型號單車y輛,單車公司可獲得的總收入為Z;
則有$\left\{\begin{array}{l}{x+y≤100}\\{500x+3000y≤100000}\\{x≥0,x∈Z}\\{y≥0,y∈Z}\end{array}\right.$,即$\left\{\begin{array}{l}{x+y≤100}\\{x+6y≤200}\\{x≥0,x∈Z}\\{y≥0,y∈Z}\end{array}\right.$,①
且Z=2×0.5x+2×y=x+2y,
不等式組①表示的平面區(qū)域為;
分析可得:當x=80,y=20時,
Z取得最大值,其最大值Z=80+2×20=120;
故答案為:120.
點評 本題考查線性規(guī)劃問題的應用,注意本題中x、y的取值范圍.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | -1 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\overrightarrow{AG}$=$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AC}$ | B. | $\overrightarrow{AG}$=$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$ | C. | $\overrightarrow{AG}$=$\frac{1}{2}$$\overrightarrow{AB}$-$\frac{1}{2}$$\overrightarrow{AC}$ | D. | $\overrightarrow{AG}$=$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com