設(shè)x為非零實(shí)數(shù),則p:|x+
1
x
|>2是q:|x|>1成立的(  )
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡(jiǎn)易邏輯
分析:根據(jù)不等式的性質(zhì),利用充分條件和必要條件的定義進(jìn)行判斷即可得到結(jié)論.
解答: 解:若p成立,q不一定成立,如取x=0.5,
若反之若|x|>1成立,則:|x+
1
x
|=|x|+|
1
x
|≥2,
∵|x|>1,
∴|x+
1
x
|>2,
故p是q的必要不充分條件,
故選:B.
點(diǎn)評(píng):本題主要考查充分條件和必要條件的判斷,根據(jù)不等式的性質(zhì)是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果對(duì)于一切的正實(shí)數(shù)x、y,不等式
y
4
-cos2x≥asinx-
9
y
都成立,則實(shí)數(shù)a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a>b>0,則下列不等式成立的是(  )
A、a+b<2
ab
B、
a
b
C、log
1
2
a
log
1
2
b
D、0.2a>0.2b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x∈Z,n∈N*,定義
M
n
x
=x(x+1)(x+2)…(x+n-1),則函數(shù)f(x)=
M
11
x-5
的奇偶性是( 。
A、f(x)為偶函數(shù),不是奇函數(shù)
B、f(x)為奇函數(shù),不是偶函數(shù)
C、f(x)既是偶函數(shù),又是奇函數(shù)
D、f(x)既不是偶函數(shù),又不是奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U=Z,A={-1,0,1,2},B={x∈R|x2=3x-2},則A∩(∁UB)=( 。
A、{-1,2}
B、{-1,0}
C、{0,1}
D、{1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,點(diǎn)D是BC的中點(diǎn),過(guò)點(diǎn)D的直線分別交直線AB、AC于E、F兩點(diǎn),若
AB
=λ
AE
AC
AF
(λ>0,μ>0),則
1
λ
+
4
μ
的最小值為( 。
A、
9
2
B、
13
2
C、
15
2
D、
17
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|(x-1)(x-5)<0},B={x|log2x≤2},則集合A∩B=(  )
A、{x|0<x<4}
B、{x|0<x<5}
C、{x|1<x≤4}
D、{x|4≤x<5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z滿足
1+z
i
=1-z,則z的虛部為(  )
A、-1B、-iC、1D、i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=ex(x2+mx+1-2m),其中m∈R.
(Ⅰ)當(dāng)m=1時(shí),求函數(shù)y=f(x)單調(diào)遞增區(qū)間;
(Ⅱ)求證:對(duì)任意m∈R,函數(shù)y=f(x)的圖象在點(diǎn)(0,f(0))處的切線恒過(guò)定點(diǎn);
(Ⅲ)是否存在實(shí)數(shù)m的值,使得y=f(x)在(-∞,+∞)上有最大值或最小值,若存在,求出實(shí)數(shù)m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案