若x∈Z,n∈N*,定義
M
n
x
=x(x+1)(x+2)…(x+n-1),則函數(shù)f(x)=
M
11
x-5
的奇偶性是( 。
A、f(x)為偶函數(shù),不是奇函數(shù)
B、f(x)為奇函數(shù),不是偶函數(shù)
C、f(x)既是偶函數(shù),又是奇函數(shù)
D、f(x)既不是偶函數(shù),又不是奇函數(shù)
考點(diǎn):函數(shù)奇偶性的判斷
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)條件求出f(x)的表達(dá)式,利用函數(shù)的奇偶性的定義進(jìn)行判斷即可.
解答: 解:由定義可知f(x)=
M
11
x-5
=x(x-5)(x-4)…(x+4)(x+5)=x(x2-25)(x2-16)(x2-9)(x2-4)(x2-1),
∴f(-x)=-f(x),
即f(x)為奇函數(shù),不是偶函數(shù),
故選:B.
點(diǎn)評(píng):本題主要考查函數(shù)奇偶性的判斷,利用條件求出f(x)的表達(dá)式是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文)如果函數(shù)f(x)=sin(ωx+
π
6
)(ω>0)的兩個(gè)相鄰零點(diǎn)之間的距離為
π
12
,則ω的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a是實(shí)數(shù),
a+i
1-i
是純虛數(shù),則a等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)上除頂點(diǎn)外的任意一點(diǎn),F(xiàn)1、F2分別是雙曲線的左、右焦點(diǎn),△PF1F2的內(nèi)切圓與邊F1F2相切于點(diǎn)M,則
F1M
MF2
=(  )
A、a2
B、b2
C、a2+b2
D、
1
2
b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)
2i
2-i
=( 。
A、-
2
5
+
4
5
i
B、
2
5
-
4
5
i
C、
2
5
+
4
5
i
D、-
2
5
-
4
5
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P是雙曲線x2-
y2
4
=1上除頂點(diǎn)外的任意一點(diǎn),F(xiàn)1、F2分別是雙曲線的左、右焦點(diǎn),△PF1F2的內(nèi)切圓與邊F1F2相切于點(diǎn)M,則
F1M
MF2
=( 。
A、5B、4C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x為非零實(shí)數(shù),則p:|x+
1
x
|>2是q:|x|>1成立的(  )
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=sin4x-cos4x在[-
π
12
π
3
]的最小值是( 。
A、-1
B、-
3
2
C、
1
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2
3
x3-2tx+t•lnx(t∈R).
(Ⅰ)若曲線y=f(x)在x=1處的切線與直線y=x平行,求實(shí)數(shù)t的值;
(Ⅱ)證明:對(duì)任意的x1,x2∈(0,1]及t∈R,都有|f(x1)-f(x2)|≤(|t-1|+1)|lnx1-lnx2|成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案