設(shè)數(shù)列{an}的前n項和為Sn=n2,則a9的值是
 
考點:數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:由已知得a9=S9-S8,由此能求出結(jié)果.
解答: 解:∵數(shù)列{an}的前n項和為Sn=n2,
∴a9=S9-S8=92-82=17.
故答案為:17.
點評:本題考查數(shù)列的第9項的求法,是基礎(chǔ)題,解題時要注意公式an=
S1,n=1
Sn-Sn-1,n≥2
的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

某休閑農(nóng)莊有一塊長方形魚塘ABCD,AB=50米,BC=25
3
米,為了便于游客休閑散步,該農(nóng)莊決定在魚塘內(nèi)建三條如圖所示的觀光走廊OE、EF和OF,考慮到整體規(guī)劃,要求O是AB的中點,點E在邊BC上,點F在邊AD上,且∠EOF=90°.
(1)設(shè)∠BOE=α,試將△OEF的周長l表示成α的函數(shù)關(guān)系式,并求出此函數(shù)的定義域;
(2)經(jīng)核算,三條走廊每米建設(shè)費用均為4000元,試問如何設(shè)計才能使建設(shè)總費用最低并求出最低總費用.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在公比不等于1的等比數(shù)列{an}中,a2,a8,a5成等差數(shù)列.
(1)求證:S4,S10,S7成等差數(shù)列;
(2)若a1=1,數(shù)列{|an3|}的前項和為Tn,求證:Tn<2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:-24-
12
+|1-4sin60°|+(π-
2
3
0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在下列四個命題中:
①函數(shù)y=f(2x-1)的定義域為(-1,1),則f(x+1)的定義域為(-4,0);
②函數(shù)f(x)=lnx+4x-13的零點一定位于區(qū)間(2,3);
③函數(shù)f(x)=log 
1
2
(2x2-3x+1)的增區(qū)間是(-∞,
1
2
];
④函數(shù)f(x)是定義域為[-1,1]的偶函數(shù),且在[0,1]上遞增,而且f(x-1)<f(2x-1),則x的取值范圍為(
2
3
,1].
其中正確的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正整數(shù)指數(shù)函數(shù)y=(a+1)x是x∈N上的減函數(shù),則a的取值范圍是(  )
A、0<a<1B、-1<a<0
C、a>0D、a≥0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sin(
π
3
-x)=
3
5
,則cos(
6
-x)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α,β都是銳角,sinα=
4
5
,cos(α+β)=
5
13

(Ⅰ)求tan2α的值;
(Ⅱ)求sinβ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若sin(π-α)-cos(-α)=
1
2
,則sin3(π+α)+cos3(2π+α)的值是
 

查看答案和解析>>

同步練習冊答案