分析:(1)當(dāng)a=-1時(shí),令F(x)=f(x)+
=lnx-
+,(1>x>0).則
F′(x)=--=
.令
=t(t∈(0,1)).可得F′(x)=g(t)=
.令h(t)=-t
3+2t
2-2,t∈(0,1).則h′(t)=-3t
2+4t=t(4-3t)>0,可得h(t)在區(qū)間(0,1)上單調(diào)遞增,可得h(t)<h(1)=-1+2-2=-1<0.于是F′(x)<0,即可得到F(x)在區(qū)間(0,1)上單調(diào)性.
(2)
f(x)=lnx+a,(x>0).
f′(x)=+=
.對(duì)a分類討論:①當(dāng)a≥0時(shí),f′(x)>0,可得函數(shù)f(x)在區(qū)間(0,+∞)上單調(diào)遞增.可得函數(shù)f(x)有唯一零點(diǎn)在(0,1)上.②當(dāng)a<0時(shí),令f′(x)=0,解得x=
.可以判定函數(shù)f(x)在x=
處取得極大值,即最大值
f()=
f()=2ln.通過對(duì)最大值的討論即可得出零點(diǎn)的個(gè)數(shù).
解答:(1)證明:當(dāng)a=-1時(shí),令F(x)=f(x)+
=lnx-
+,(1>x>0).
則
F′(x)=--=
.
令
=t(t∈(0,1)).則F′(x)=g(t)=
.
令h(t)=-t
3+2t
2-2,t∈(0,1).
則h′(t)=-3t
2+4t=t(4-3t)>0,
∴h(t)在區(qū)間(0,1)上單調(diào)遞增,∴h(t)<h(1)=-1+2-2=-1<0.
∴F′(x)<0,∴F(x)在區(qū)間(0,1)上單調(diào)遞減,
∴F(x)>F(1)=0-1+1=0,即
f(x)>-.
(2)解:
f(x)=lnx+a,(x>0).
f′(x)=+=
.
①當(dāng)a≥0時(shí),f′(x)>0,∴函數(shù)f(x)在區(qū)間(0,+∞)上單調(diào)遞增.
∵當(dāng)x≥1時(shí),f(x)≥f(1)=a>0,因此f(x)在[1,+∞)上無零點(diǎn),函數(shù)f(x)有唯一零點(diǎn)在(0,1)上.
②當(dāng)a<0時(shí),令f′(x)=0,解得x=
.
由f′(x)>0,解得
0<x<,函數(shù)f(x)在此區(qū)間上單調(diào)遞增;由f′(x)<0,解得
x>,函數(shù)f(x)在此區(qū)間上單調(diào)遞減.
∴函數(shù)f(x)在x=
處取得極大值,即最大值
f()=
f()=2ln.
1°令
f()=0,解得
a=-.即當(dāng)a=
-時(shí),函數(shù)f(x)有唯一零點(diǎn)x=e
2.
2°當(dāng)
-<a<0時(shí),此時(shí)函數(shù)f(x)有兩個(gè)零點(diǎn)x
1,x
2.其中,
x1∈(0,),
x2∈(,+∞).
3°當(dāng)
a>-時(shí),
f()<0,此時(shí)f(x)在區(qū)間(0,+∞)上無零點(diǎn).綜上所述:當(dāng)a≥0時(shí),函數(shù)f(x)有唯一零點(diǎn)在(0,1)上.
當(dāng)
-<a<0時(shí),函數(shù)f(x)有兩個(gè)零點(diǎn)x
1,x
2.其中,
x1∈(0,),
x2∈(,+∞).
當(dāng)
a>-時(shí),f(x)在區(qū)間(0,+∞)上無零點(diǎn).