集合A={x|x2-4x+3>0},集合B={x|2x-4>0}
(1)求A∩B,A∪B;
(2)若全集U=R,求CUA∩B.
【答案】分析:由題意集合A={x|x2+2x-8≥0},B={x||x-1|≤3},利用絕對(duì)值不等式及一元二次不等式解出集合A,B,
(1)直接利用交集,并集的運(yùn)算法則求出A∩B.A∪B;
(2)求出A的補(bǔ)集,然后求解CUA∩B,即可.
解答:解:∵集合A={x|x2-4x+3>0},
∴A={x|3<x或x<1},∵B={x|x>2},
(1)A∩B={x|3<x或x<1}∩{x|x>2}={x|x>3};
A∪B={x|3<x或x<1}∪{x|x>2}={x|x<1或x>2};
(2)全集U=R,CUA={x|1≤x≤3},
∴CUA∩B={x|1≤x≤3}∩{x|x>2}={x|2<x≤3}.
點(diǎn)評(píng):本題是基礎(chǔ)題,考查一次、二次不等式的解法,集合的基本運(yùn)算,解題時(shí)可以借助數(shù)軸解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

1、若集合A={x|x2-x+1≥0},B={x|x2-5x+4≤0},則A∩B=
{x|1≤x≤4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2-3x+2=0},B={x|x2-ax+3a-5=0}.若A∩B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2-3x+2=0},B={x|x2-mx+m-1=0},若B⊆A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2=4},B={x|ax=1},若B⊆A,則實(shí)數(shù)a的取值集合為
{0,-2,2}
{0,-2,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

集合A={x|x2+ax+1=0,x∈R},B={1,2},且A=B,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案