4.已知集合M={x|x>2},N={x|1<x<3},則N∩∁RM=( 。
A.{x|-2≤x<1}B.{x|-2≤x≤2}C.{x|1<x≤2}D.{x|x<2}

分析 求出∁RM,再由交集的定義,即可得到所求集合.

解答 解:集合M={x|x>2},N={x|1<x<3},
則N∩∁RM={x|1<x<3}∩{x|x≤2}
={x|1<x≤2},
故選:C.

點評 本題考查集合的運算,主要是交集和補集的運算,運用定義法是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知正方形ABCD的邊長為2,E是BC的中點,以點C為圓心,CE長為半徑作圓,點P是該圓上的任一點,則$\overrightarrow{AP}•\overrightarrow{DE}$的取值范圍是( 。
A.$[0,2+\sqrt{6}]$B.$[2-\sqrt{6},2+\sqrt{6}]$C.$[0,2+\sqrt{5}]$D.$[2-\sqrt{5},2+\sqrt{5}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若圓C與y軸相切于點P(0,1),與x軸的正半軸交于A,B兩點,且|AB|=2,則圓C的標準方程是( 。
A.${(x+\sqrt{2})^2}+{(y+1)^2}=2$B.${(x+1)^2}+{(y+\sqrt{2})^2}=2$C.${(x-\sqrt{2})^2}+{(y-1)^2}=2$D.${(x-1)^2}+{(y-\sqrt{2})^2}=2$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在區(qū)間[-4,1]上隨機地取一個實數(shù)x,若x滿足|x|<a的概率為$\frac{4}{5}$,則實數(shù)a的值為( 。
A.$\frac{1}{2}$B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知復(fù)數(shù)z=$\frac{2-{i}^{2017}}{1+i}$,則z的共軛復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)非零平面向量$\overrightarrow{a}$、$\overrightarrow$、$\overrightarrow{c}$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|=|$\overrightarrow{c}$|,$\overrightarrow{a}$+$\overrightarrow$=$\overrightarrow{c}$,則向量$\overrightarrow{a}$與$\overrightarrow$的夾角為(  )
A.150°B.120°C.60°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖所示,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等邊三角形,已知BD=8,AD=4,AB=2DC=4$\sqrt{5}$.
(1)設(shè)M是PC上的一點,求證:平面MBD⊥平面PAD;
(2)求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知等比數(shù)列{an}滿足a1=2,a2=4(a3-a4),數(shù)列{bn}滿足bn=3-2log2an
(1)求數(shù)列{an},{bn}的通項公式;
(2)令cn=$\frac{_{n}}{{a}_{n}}$,求數(shù)列{cn}的前n項和Sn;
(3)若λ>0,求對所有的正整數(shù)n都有2λ2-kλ+2>a2nbn成立的k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=x2+2ax+3,x∈[-4,6],
(1)求實數(shù)a的取值范圍,使y=f(x)在區(qū)間[-4,6]上是單調(diào)函數(shù);
(2)當(dāng)a=-1時,求f(|x|)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案