15.若圓C與y軸相切于點(diǎn)P(0,1),與x軸的正半軸交于A,B兩點(diǎn),且|AB|=2,則圓C的標(biāo)準(zhǔn)方程是( 。
A.${(x+\sqrt{2})^2}+{(y+1)^2}=2$B.${(x+1)^2}+{(y+\sqrt{2})^2}=2$C.${(x-\sqrt{2})^2}+{(y-1)^2}=2$D.${(x-1)^2}+{(y-\sqrt{2})^2}=2$

分析 根據(jù)題意畫(huà)出圖形,結(jié)合圖形求出圓的半徑和圓心坐標(biāo),即可寫(xiě)出圓的標(biāo)準(zhǔn)方程.

解答 解:如圖所示,
由題意,圓C的半徑為
r=$\sqrt{{1}^{2}{+1}^{2}}$=$\sqrt{2}$,
圓心坐標(biāo)為($\sqrt{2}$,1),
∴圓C的標(biāo)準(zhǔn)方程為(x-$\sqrt{2}$)2+(y-1)2=2;
故選:C.

點(diǎn)評(píng) 本題考查了圓的標(biāo)準(zhǔn)方程的應(yīng)用問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知R是實(shí)數(shù)集,集合 A={x|22x+1≥16},B={x|(x-1)(x-3)<0,則(∁RA)∩B=( 。
A.(1,2)B.[1,2]C.(1,3)D.(1,$\frac{3}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=lnx-$\frac{1}{2}$x2+x
(1)設(shè)G(x)=f(x)+lnx,求G(x)的單調(diào)遞增區(qū)間;
(2)證明:k<1時(shí),存在x0>1,當(dāng)x∈(1,x0)時(shí),恒有f(x)-$\frac{1}{2}$>k(x-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.電影院一排10個(gè)位置,甲、乙、丙三人去看電影,要求他們坐在同一排,那么他們每人左右兩邊都有空位且甲坐在中間的坐法有40種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.某市在對(duì)高三學(xué)生的4月理科數(shù)學(xué)調(diào)研測(cè)試的數(shù)據(jù)統(tǒng)計(jì)顯示,全市10000名學(xué)生的成績(jī)服從正態(tài)分布X~N(110,144),現(xiàn)從甲校100分以上的200份試卷中用系統(tǒng)抽樣的方法抽取了20份試卷來(lái)分析,統(tǒng)計(jì)如下:
試卷編號(hào) n1 n2 n3 n4 n5 n6 n7 n8 n9 n10
試卷得分109118112114126128127124126120
試卷編號(hào) n11 n12 n13 n14 n15 n16 n17 n18 n19 n20
試卷得分135138135137135139142144148150
(注:表中試卷編號(hào)n1<n2<28<n4<n5<…<n20

(1)列出表中試卷得分為126分的試卷編號(hào)(寫(xiě)出具體數(shù)據(jù));
(2)該市又從乙校中也用系統(tǒng)抽樣的方法抽取了20份試卷,將甲乙兩校這40份試卷的得分制作了莖葉圖(如圖),試通過(guò)莖葉圖比較兩校學(xué)生成績(jī)的平均分及分散程度(均不要求計(jì)算出具體值,給出結(jié)論即可);
(3)在第(2)問(wèn)的前提下,從甲乙兩校這40名學(xué)生中,從成績(jī)?cè)?40分以上(含140分)的學(xué)生中任意抽取3人,該3人在全市前15名的人數(shù)記為ξ,求ξ的分布列和期望.
(附:若隨機(jī)變量X服從正態(tài)分布N(μ,σ2),則P(μ-σ<X<μ+σ)=68.3%,P(μ-2σ<X<μ+2σ)=95.4%,P(μ-3σ<X<μ+3σ)=99.7%)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知x,y滿足$\left\{\begin{array}{l}2x+y-2≥0\\ x+y-3≤0\\ x≥0\\ y≥0\end{array}\right.$,則y+3x的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.下列判斷正確的是(  )
A.若事件A與事件B互斥,則事件A與事件B對(duì)立
B.函數(shù)y=$\sqrt{{x}^{2}+9}+\frac{1}{\sqrt{{x}^{2}+9}}$(x∈R)的最小值為2
C.若直線(m+1)x+my-2=0與直線mx-2y+5=0互相垂直,則m=1
D.“p∧q為真命題”是“p∨q為真命題”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知集合M={x|x>2},N={x|1<x<3},則N∩∁RM=(  )
A.{x|-2≤x<1}B.{x|-2≤x≤2}C.{x|1<x≤2}D.{x|x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.在平面直角坐標(biāo)系xOy中,已知點(diǎn)P在曲線Γ:y=$\sqrt{1-\frac{{x}^{2}}{4}}$(x≥0)上,曲線Γ與x軸相交于點(diǎn)B,與y軸相交于點(diǎn)C,點(diǎn)D(2,1)和點(diǎn)E(1,0)滿足$\overrightarrow{OD}$=λ$\overrightarrow{CE}$+μ$\overrightarrow{OP}$(λ,μ∈R),則λ+μ的最小值為$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案