設(shè)函數(shù).
(Ⅰ)求的單調(diào)區(qū)間和極值;
(Ⅱ)是否存在實(shí)數(shù),使得關(guān)于的不等式的解集為?若存在,求的取值范圍;若不存在,試說明理由.
|
. ……2分
故當(dāng)時(shí),, 時(shí),.
所以,在單調(diào)遞增,在單調(diào)遞減.
由此知 在的極大值為,沒有極小值. ……4分
(Ⅱ)(。┊(dāng)時(shí),
由于,
故關(guān)于的不等式的解集為 ……8分
(ⅱ)當(dāng)時(shí),由 知=,其中為正整數(shù),且有. ……10分
又時(shí),.
且.
取整數(shù)滿足,,且,
則,
即當(dāng)時(shí),關(guān)于的不等式的解集不是.
綜合(。áⅲ┲,存在,使得關(guān)于的不等式的解集為,且的取值范圍為. ……12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
π |
6 |
3 |
5 |
4 |
5 |
π |
6 |
OP |
OQ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| ||
2 |
1 |
2 |
π |
2 |
3 |
5 |
π |
6 |
OP |
OQ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年四川綿陽高中高三第二次診斷性考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知向量a=,b=,設(shè)函數(shù)=ab.
(Ⅰ)求的單調(diào)遞增區(qū)間;
(Ⅱ)若將的圖象向左平移個(gè)單位,得到函數(shù)的圖象,求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖南省株洲市高三第五次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知向量 與 共線,設(shè)函數(shù).
(1)求函數(shù)的周期及最大值;
(2)已知銳角 △ABC 中的三個(gè)內(nèi)角分別為 A、B、C,若有,邊 BC=,,求 △ABC 的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com