A. | -$\frac{7}{2}$ | B. | -4 | C. | -$\frac{9}{2}$ | D. | -$\frac{5}{2}$ |
分析 先根據(jù)f(x)=2f(2-x)-x2+8x-8求出函數(shù)f(x)的解析式,然后對(duì)函數(shù)f(x)進(jìn)行求導(dǎo),進(jìn)而可得到y(tǒng)=f(x)在點(diǎn)(1,f(1))處的切線方程的斜率,最后根據(jù)點(diǎn)斜式可求導(dǎo)切線方程,構(gòu)造等差數(shù)列進(jìn)行求解即可..
解答 解:∵f(x)=2f(2-x)-x2+8x-8,
∴f(2-x)=2f(x)-(2-x)2+8(2-x)-8.
∴f(2-x)=2f(x)-x2+4x-4+16-8x-8.
將f(2-x)代入f(x)=2f(2-x)-x2+8x-8
得f(x)=4f(x)-2x2-8x+8-x2+8x-8.
∴f(x)=x2,f'(x)=2x
∴y=f(x)在(1,f(1))處的切線斜率為y′=2.
∴函數(shù)y=f(x)在(1,f(1))處的切線方程為y-1=2(x-1),
即y=2x-1.
∵點(diǎn)(an,2an+1)在l上
∴2an+1=2an-1,
即an+1-an=-$\frac{1}{2}$,
則數(shù)列{an}是公差d=-$\frac{1}{2}$的等差數(shù)列,首項(xiàng)為a1=1,
則an=1-$\frac{1}{2}$(n-1)=-$\frac{1}{2}$(n-3),
則a8=-$\frac{5}{2}$,
故選:D.
點(diǎn)評(píng) 本題主要考查數(shù)列的求解,根據(jù)導(dǎo)數(shù)的幾何意義求出函數(shù)的切線方程,利用構(gòu)造法構(gòu)造等差數(shù)列是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x>$\frac{x+y}{2}$>$\sqrt{xy}$>y | B. | y>$\frac{x+y}{2}$>$\sqrt{xy}$>x | C. | x>$\frac{x+y}{2}$>y>$\sqrt{xy}$ | D. | y>$\frac{x+y}{2}$≥$\sqrt{xy}$>x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | P真q假 | B. | p∧q為真 | C. | p∨q為假 | D. | P假q真 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com