3.已知函數(shù)f(x)=loga(${\sqrt{1+9{x^2}}$-3x)+1,若f(ln2)=1,則f(ln$\frac{1}{2}$)=( 。
A.-1B.0C.1D.2

分析 構造g(x)=loga(${\sqrt{1+9{x^2}}$-3x)-3x),可得g(-x)=g(x),從而可得f(-x)+f(x)=2,即可得出結論

解答 解:令g(x)=loga(${\sqrt{1+9{x^2}}$-3x)-3x),
則g(-x)=l0
loga($\sqrt{1+9{x}^{2}}$+3x)=-loga($\sqrt{1+9{x}^{2}-x}$-3x)=-g(x)
∴函數(shù)g(x)是奇函數(shù),
∴f(-x)-1+f(x)-1=0
∴f(-x)+f(x)=2,
∴f(ln2)+f(ln$\frac{1}{2}$)=f(ln2)+f(-ln2)=2,
故選:C

點評 本題考查函數(shù)奇偶性的運用,考查學生的計算能力,正確構造函數(shù)是關鍵

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

13.若a=log97,則3a+3-a=$\frac{8\sqrt{7}}{7}$.設α為銳角,若cos(α+$\frac{π}{6}$)=$\frac{3}{5}$,則sin(α-$\frac{π}{12}$)=$\frac{\sqrt{2}}{10}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知函數(shù)y=f(x-1)是奇函數(shù),且f (2)=1,則f (-4)=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.若$\overrightarrow{a}$=(2,3),$\overrightarrow$=(4,m+1),且$\overrightarrow{a}$∥$\overrightarrow$,則m的值是( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.解不等式loga(2x-5)>loga(x-1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.若等式$\sqrt{3}$sinx+cosx=m-1能夠成立,則實數(shù)m的取值范圍是[-1,3].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.現(xiàn)有含三個元素的集合,既可以表示為{a,$\frac{a}$,1},也可表示為{a2,a+b,0},則a2014+b2012=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.設i是虛數(shù)單位,則$\frac{1}{5}$-$\frac{2}{5}$i的虛部為( 。
A.$-\frac{2}{5}$B.$-\frac{2}{5}i$C.$\frac{2}{5}$D.$\frac{2}{5}i$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知函數(shù)f(x)=|2x+1+$\frac{a}{{2}^{x}}$|在[-$\frac{1}{2}$,3]上單調遞增,則實數(shù)a的取值范圍[0,1].

查看答案和解析>>

同步練習冊答案