19.如圖,在矩形ABCD中,$AB=\sqrt{3},BC=1$,將△ACD沿折起,使得D折起的位置為D1,且D1在平面ABC的射影恰好落在AB上,在四面體D1ABC的四個(gè)面中,其中有n對(duì)平面相互垂直,則n等于( 。
A.2B.3C.4D.5

分析 設(shè)D1在平面ABC的射影為E,連接D1E,根據(jù)線面垂直的性質(zhì)與判定,面面垂直的判定定理尋找互相垂直的平面.

解答 解:設(shè)D1在平面ABC的射影為E,連接D1E,則D1E⊥平面ABC,
∵D1E?平面ABD1,∴平面ABD1⊥平面ABC.
∵D1E⊥平面ABC,BC?平面ABC,
∴D1E⊥BC,又AB⊥BC,D1E∩AB=E,
∴BC⊥平面ABD1,又BC?平面BCD1
∴平面BCD1⊥平面ABD1,
∵平面BC⊥平面ABD1,AD1?平面ABD1
∴BC⊥AD1,又CD1⊥AD1,BC∩CD1=C,
∴AD1⊥平面BCD1,又AD1?平面ACD1,
∴平面ACD1⊥平面BCD1
∴共有3對(duì)平面互相垂直.
故選:B.

點(diǎn)評(píng) 本題考查了線面垂直的性質(zhì)與判定,面面垂直的判定,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=x2+mx-2m-1僅存在整數(shù)零點(diǎn),則實(shí)數(shù)m的集合為{0,-8}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在等差數(shù)列{an}中,若a2+a4+a6+a8+a10=80,則${a}_{7}-\frac{1}{2}{a}_{8}$的值為( 。
A.4B.6C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.《算數(shù)書》竹簡(jiǎn)于上世紀(jì)八十年代在湖北省江陵縣張家山出土,這是我國現(xiàn)存最早的有系統(tǒng)的數(shù)學(xué)典籍,其中記載有求“蓋”的術(shù):置如其周,令相承也.又以高乘之,三十六成一.該術(shù)相當(dāng)于給出了有圓錐的底面周長L與高,計(jì)算其體積V的近似公式V≈$\frac{1}{48}$L2h,它實(shí)際上是將圓錐體積公式中的圓周率π近似取為4,那么近似公式V≈$\frac{1}{75}$L2h相當(dāng)于將圓錐體積公式中π的近似取為( 。
A.$\frac{25}{6}$B.$\frac{25}{8}$C.$\frac{25}{3}$D.$\frac{25}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知x,y滿足$\left\{\begin{array}{l}x≥2\\ x+y≤4\\ 2x-y-m≤0\end{array}\right.$,若目標(biāo)函數(shù)z=3x+y的最大值為10,則m的值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.i為虛數(shù)單位,z=$\frac{1}{cos2θ-isin2θ}$對(duì)應(yīng)的點(diǎn)在第二象限,則θ是第一、三象限的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)函數(shù)$f(x)=ln({\sqrt{{x^2}+1}-x})$,若a,b滿足不等式f(a2-2a)+f(2b-b2)≤0,則當(dāng)1≤a≤4時(shí),2a-b的最大值為( 。
A.1B.10C.5D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.關(guān)于x的方程x2-x•cosA•cosB-cos2$\frac{C}{2}$=0有一個(gè)根為1,則△ABC一定是( 。
A.等腰三角形B.直角三角形C.銳角三角形D.鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,正三棱錐P-ABC,已知AB=2,PA=3
(1)求此三棱錐體積
(2)若M是側(cè)面PBC上一點(diǎn),試在面PBC上過點(diǎn)M畫一條與棱PA垂直的線段,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案