若f(n)=12+22+32+…+(2n)2,則f(k+1)與f(k)的遞推關(guān)系式是________.
f(k+1)=f(k)+(2k+1)2+(2k+2)2
∵f(k)=12+22+…+(2k)2
∴f(k+1)=12+22+…+(2k)2+(2k+1)2+(2k+2)2;
∴f(k+1)=f(k)+(2k+1)2+(2k+2)2.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分14分)定義:對(duì)于函數(shù),.若對(duì)定義域內(nèi)的恒成立,則稱(chēng)函數(shù)函數(shù).(1)請(qǐng)舉出一個(gè)定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133214867351.gif" style="vertical-align:middle;" />的函數(shù),并說(shuō)明理由;(2)對(duì)于定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133214898328.gif" style="vertical-align:middle;" />的函數(shù),求證:對(duì)于定義域內(nèi)的任意正數(shù),均有;
(3)對(duì)于值域函數(shù),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)f(x)=x-xlnx,數(shù)列{an}滿(mǎn)足0<a1<1,an+1=f(an).求證:
(1)函數(shù)f(x)在區(qū)間(0,1)是增函數(shù);
(2)an<an+1<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知a>0,b>0,c>0,證明三個(gè)數(shù)
ab+1
b
,
bc+1
c
,
ca+1
a
中至少有一個(gè)不小于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(1)若函數(shù),且當(dāng)時(shí),猜想的表達(dá)式           
(2)用反證法證明命題"若能被3整除,那么中至少有一個(gè)能被3整除"時(shí),假設(shè)應(yīng)為       

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知數(shù)列{an}滿(mǎn)足a1=2,an+1 (n∈N*),則a3=________,a1·a2·a3·…·a2014=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

用數(shù)學(xué)歸納法證明1++…+> (n∈N*)成立,其初始值至少應(yīng)取(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

用數(shù)學(xué)歸納法證明等式時(shí),第一步驗(yàn)證時(shí),左邊應(yīng)取的項(xiàng)是
A.1B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案