在ΔABC中,頂點(diǎn)A,B, C所對(duì)三邊分別是a,b,c已知B(-1, 0), C(1, 0),且b,a, c成等差數(shù)列.

(I )求頂點(diǎn)A的軌跡方程;

(II) 設(shè)頂點(diǎn)A的軌跡與直線y=kx+m相交于不同的兩點(diǎn)M、N,如果存在過(guò)點(diǎn)P(0,-)的直線l,使得點(diǎn)M、N關(guān)于l對(duì)稱,求實(shí)數(shù)m的取值范圍

 

【答案】

(1)(2)當(dāng)k=0時(shí),m的取值范圍為;

當(dāng)k≠0時(shí),m的取值范圍為().

【解析】(I ) 且b,a, c成等差數(shù)列結(jié)合橢圓的定義求得軌跡方程;(II)將y=kx+m與橢圓方程聯(lián)立,判別式大于0,根據(jù)點(diǎn)關(guān)于直線對(duì)稱,得k、m的關(guān)系

解:(I)由題知得b+c=4,即|AC|+|AB|=4(定值).

由橢圓定義知,頂點(diǎn)A的軌跡是以B、C為焦點(diǎn)的橢圓(除去左右頂點(diǎn)),

且其長(zhǎng)半軸長(zhǎng)為2,半焦距為1,于是短半軸長(zhǎng)為

∴ 頂點(diǎn)A的軌跡方程為.………………………………4分

(II)由

消去y整理得(3+4k2)x2+8kmx+4(m2-3)=0.∴  Δ=(8km)2-4(3+4k2)×4(m2-3)>0,

整理得:4k2>m2-3.①令M(x1,y1),N(x2,y2),則 

設(shè)MN的中點(diǎn)P(x0,y0),則

,…………………7分

i)當(dāng)k=0時(shí),由題知,.……………………………8分

ii)當(dāng)k≠0時(shí),直線l方程為,由P(x0,y0)在直線l上,得,得2m=3+4k2.②把②式代入①中可得2m-3>m2-3,解得0<m<2.又由②得2m-3=4k2>0,解得.∴ .驗(yàn)證:當(dāng)(-2,0)在y=kx+m上時(shí),得m=2k代入②得4k2-4k+3=0,k無(wú)解.即y=kx+m不會(huì)過(guò)橢圓左頂點(diǎn).同理可驗(yàn)證y=kx+m不過(guò)右頂點(diǎn).∴ m的取值范圍為().………11分

綜上,當(dāng)k=0時(shí),m的取值范圍為;當(dāng)k≠0時(shí),m的取值范圍為().

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•綿陽(yáng)三模)在△ABC中,頂點(diǎn)A,B,C所對(duì)三邊分別是a,b,c.已知B(-1,0),C(1,0),且b,a,c成等差數(shù)列.
(I)求頂點(diǎn)A的軌跡方程;
(II)設(shè)直線l過(guò)點(diǎn)B且與點(diǎn)A的軌跡相交于不同的兩點(diǎn)M、N如果滿足|
CM
+
CN
|=|
CM
-
CN
|,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•綿陽(yáng)三模)在△ABC中,頂點(diǎn)A,B,C所對(duì)三邊分別是a,b,c已知B(-1,0),C(1,0),且b,a,c成等差數(shù)列.
(I)求頂點(diǎn)A的軌跡方程;
(II) 設(shè)頂點(diǎn)A的軌跡與直線y=kx+m相交于不同的兩點(diǎn)M、N,如果存在過(guò)點(diǎn)P(0,-
12
)的直線l,使得點(diǎn)M、N關(guān)于l對(duì)稱,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年河南鄭州高三第一次質(zhì)量預(yù)測(cè)理數(shù)學(xué)試卷(解析版) 題型:解答題

在△ABC中,頂點(diǎn)A,B,動(dòng)點(diǎn)D,E滿足:①;②,③共線.

(Ⅰ)求△ABC頂點(diǎn)C的軌跡方程;

(Ⅱ)是否存在圓心在原點(diǎn)的圓,只要該圓的切線與頂點(diǎn)C的軌跡有兩個(gè)不同交點(diǎn)M,N,就一定有,若存在,求該圓的方程;若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年河南鄭州高三第一次質(zhì)量預(yù)測(cè)文科數(shù)學(xué)試卷(解析版) 題型:解答題

在△ABC中,頂點(diǎn)A,B,動(dòng)點(diǎn)D,E滿足:①;②,③共線.

(Ⅰ)求△ABC頂點(diǎn)C的軌跡方程;

(Ⅱ)若斜率為1直線與動(dòng)點(diǎn)C的軌跡交與M,N兩點(diǎn),且,求直線的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年河南省鎮(zhèn)平一高高三下學(xué)期第四次周考文科數(shù)學(xué)試卷 題型:解答題

.(本小題滿分12分)

在△ABC中,頂點(diǎn)A(-1,0),B(1,0),動(dòng)點(diǎn)D,E滿足:

;②||=|=|③共線.

(Ⅰ)求△ABC頂點(diǎn)C的軌跡方程;

(Ⅱ) 若斜率為1直線l與動(dòng)點(diǎn)C的軌跡交于M,N兩點(diǎn),且·=0,求直線l的方程.

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案