A. | (3,5) | B. | [3,5] | C. | (2,4) | D. | [2,4] |
分析 利用和差公式倍角公式可得:函數(shù)$f(x)=4{sin^2}({\frac{π}{4}+x})-2\sqrt{3}cos2x-1$=4$sin(2x-\frac{π}{3})$+1.條件p:“$\frac{π}{4}≤x≤\frac{π}{2}$”,可得:$2x-\frac{π}{3}$∈$[\frac{1}{2},1]$,可得f(x)∈[3,5].條件q:“|f(x)-m|<2”,化為f(x)-2<m<f(x)+2.根據(jù)p是q的充分不必要條件,即可得出.
解答 解:函數(shù)$f(x)=4{sin^2}({\frac{π}{4}+x})-2\sqrt{3}cos2x-1$=$2(1-cos(\frac{π}{2}+2x))$-2$\sqrt{3}$cos2x-1=2sin2x-2$\sqrt{3}$cos2x+1=4$sin(2x-\frac{π}{3})$+1.
條件p:“$\frac{π}{4}≤x≤\frac{π}{2}$”,可得:$2x-\frac{π}{3}$∈$[\frac{1}{2},1]$,∴f(x)∈[3,5].
條件q:“|f(x)-m|<2”,∴f(x)-2<m<f(x)+2.
若p是q的充分不必要條件,則5-2<m<3+2,即3<m<5.
實數(shù)m的取值范圍是(3,5).
故選:A.
點評 本題考查了和差公式倍角公式、不等式的解法、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,0) | B. | (-∞,4] | C. | (0,+∞) | D. | [4,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com