10.如圖1,在高為2的梯形ABCD中,AB∥CD,AB=2,CD=5,過A、B分別作AE⊥CD,BF⊥CD,垂足分別為E、F.已知DE=1,將梯形ABCD沿AE、BF同側(cè)折起,得空間幾何體ADE-BCF,如圖2.
(Ⅰ)若AF⊥BD,證明:△BDE為直角三角形;
(Ⅱ)在(Ⅰ)的條件下,若DE∥CF,求三棱錐B-ACD的體積.

分析 (Ⅰ)由已知得四邊形ABEF是正方形,且邊長為2,取BE與AF的交點為O,推導(dǎo)出AF⊥BE,AF⊥BD,從而AF⊥平面BDE,進而AF⊥DE,再由AE⊥DE,得DE⊥平面ABEF,從而DE⊥BE,由此能證明△BDE為直角三角形.
(Ⅱ)取AC中點G,連結(jié)OG、DG,由三棱錐B-ACD的體積VB-ACD=VE-ACD,VE-ACD=VA-CDE,由此能求出三棱錐B-ACD的體積.

解答 證明:(Ⅰ)由已知得四邊形ABEF是正方形,且邊長為2,
在圖2中,取BE與AF的交點為O,則AF⊥BE,
由已知得AF⊥BD,BE∩BD=B,∴AF⊥平面BDE,
又DE?平面BDE,∴AF⊥DE,
又AE⊥DE,AE∩AF=A,∴DE⊥平面ABEF,
又BE?平面ABEF,∴DE⊥BE,
∴△BDE為直角三角形.
解:(Ⅱ)如圖,取AC中點G,連結(jié)OG、DG,
則OG$\underset{∥}{=}$$\frac{1}{2}CF$,由已知得DE$\underset{∥}{=}$$\frac{1}{2}CF$,
∴OG$\underset{∥}{=}$DE,則四邊形DEOG為平行四邊形,∴OE∥GD,即BE∥GD,
又BE?平面ACD,GD?平面ACD,∴BE∥平面ACD,
故三棱錐B-ACD的體積VB-ACD=VE-ACD,
∵AE⊥DE,AE⊥EF,∴AE⊥平面CDEF,即AE⊥平面CDE,
∴AE為三棱錐A-CDE的高,
∴VE-ACD=VA-CDE=$\frac{1}{3}×{S}_{△CDE}×AE$=$\frac{1}{3}×{S}_{△DEF}×AE$,
由${S}_{△DEF}=\frac{1}{2}×DE×EF=\frac{1}{2}×1×2=1$,
得${V}_{A-CDE}=\frac{1}{3}×1×2=\frac{2}{3}$,
∴三棱錐B-ACD的體積為$\frac{2}{3}$.

點評 本題考查三角形為直角三角形的證明,考查幾何體的體積的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查推理論證能力、運算求解能力、空間想象能力,考查化歸與轉(zhuǎn)化思想、數(shù)形結(jié)合思想,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在數(shù)列{an}中,a1=2,an+1=3an+2.
(1)求數(shù)列{an}的通項公式;
(2)若bn=an?log3(an+1),求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在△ABC中,∠C=90°,BC=2$\sqrt{3}$,AC=2,M為AB中點,將△ACM沿CM折起,使A、B之間的距離為2$\sqrt{2}$,則三棱錐M-ABC的體積為$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.等邊三角形ABC中,若$\overrightarrow{AP}=λ\overrightarrow{AB}+\overrightarrow{AC}$,則當$\overrightarrow{PB}•\overrightarrow{PC}$取得最小值時,λ=( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.拋擲兩枚質(zhì)地均勻的正四面體骰子,其4個面分別標有數(shù)字1,2,3,4,記每次拋擲朝下一面的數(shù)字中較大者為a(若兩數(shù)相等,則取該數(shù)),平均數(shù)為b,則事件“a-b=1”發(fā)生的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{1}{6}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)$f(x)=4{sin^2}({\frac{π}{4}+x})-2\sqrt{3}cos2x-1$,且給定條件p:“$\frac{π}{4}≤x≤\frac{π}{2}$”,條件q:“|f(x)-m|<2”,若p是q的充分不必要條件,則實數(shù)m的取值范圍是(  )
A.(3,5)B.[3,5]C.(2,4)D.[2,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)滿足f(x)=f(-x),且當x∈(-∞,0)時,f(x)+xf'(x)<0成立,若a=(20.6)•f(20.6),b=(ln2)•f(ln2),c=(${{{log}_2}\frac{1}{8}}$)•f(${{{log}_2}\frac{1}{8}}$),則a,b,c的大小關(guān)系是(  )
A.a>b>cB.c>b>aC.a>c>bD.c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)函數(shù)f(x)=x(ex-1)-ax2(e=2.71828…是自然對數(shù)的底數(shù)).
(1)若$a=\frac{1}{2}$,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)在(-1,0)內(nèi)無極值,求a的取值范圍;
(3)設(shè)n∈N*,x>0,求證:${e^x}>1+\frac{x}{1!}+\frac{x^2}{2!}+…+\frac{x^n}{n!}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1、F2,且F2也是拋物線E:y2=4x的焦點,P為橢圓C與拋物線E在第一象限的交點,且|PF2|=$\frac{5}{3}$.
(1)求橢圓C的方程;
(2)若四邊形F1PF2Q是平行四邊形,直線l∥PQ,與橢圓C交于A、B兩點,且滿足條件OA⊥OB,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案