A. | (-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$) | B. | (-$\frac{\sqrt{3}}{3},0$)∪(0,$\frac{\sqrt{3}}{3}$) | C. | [-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$] | D. | (-∞,-$\frac{\sqrt{3}}{3}$)∪($\frac{\sqrt{3}}{3}$,+∞) |
分析 若曲線${C}_{1}(x-1)^{2}+{y}^{2}=1$與曲線C2:y(y-mx-m)=0有4個不同的交點,則y-mx-m=0與曲線${C}_{1}(x-1)^{2}+{y}^{2}=1$有兩個交點,且這兩個交點不在x軸上,進而得到答案.
解答 解:若曲線${C}_{1}(x-1)^{2}+{y}^{2}=1$與曲線C2:y(y-mx-m)=0有4個不同的交點,
則y-mx-m=0與曲線${C}_{1}(x-1)^{2}+{y}^{2}=1$有兩個交點,且這兩個交點不在x軸上,
故$\frac{|-2m|}{\sqrt{1+{m}^{2}}}<1$,且m≠0,
解得:m∈(-$\frac{\sqrt{3}}{3},0$)∪(0,$\frac{\sqrt{3}}{3}$),
故選:B.
點評 本題考查的知識點是直線與圓的位置關系,點到直線的距離公式,難度中檔.
科目:高中數(shù)學 來源: 題型:解答題
第一周 | 第二周 | 第三周 | 第四周 | 第五周 | |
A型數(shù)量(臺) | 10 | 10 | 15 | A4 | A5 |
B型數(shù)量(臺) | 10 | 12 | 13 | B4 | B5 |
C型數(shù)量(臺) | 15 | 8 | 12 | C4 | C5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $\frac{2}{5}$ | C. | -$\frac{2}{5}$ | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 6 | B. | 12 | C. | 36 | D. | $2\sqrt{14-2{m^2}}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com