9.已知角α的終邊過點P(-3m,4m)(m<0),則2sinα+cosα的值是( 。
A.1B.$\frac{2}{5}$C.-$\frac{2}{5}$D.-1

分析 由題意可得x=-3m,y=4m,r=-5m,可得sinα=-$\frac{4}{5}$,cosα=$\frac{3}{5}$,從而得到 2sinα+cosα 的值.

解答 解:由題意可得  x=-3m,y=4m,r=-5m,
∴sinα=-$\frac{4}{5}$,cosα=$\frac{3}{5}$,∴2sinα+cosα=-1,
故選D.

點評 本題考查任意角的三角函數(shù)的定義,兩點間的距離公式的應(yīng)用,求出 sinα和cosα 的值是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知△ABC中,AB=4,AC=2,|λ$\overrightarrow{AB}$+(2-2λ)$\overrightarrow{AC}$|(λ∈R)的最小值為2$\sqrt{3}$,若P為邊AB上任意一點,則$\overrightarrow{PB}$•$\overrightarrow{PC}$的最小值是-$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)f(x)=$\left\{\begin{array}{l}{x+1,x≤1}\\{-x+3,x>1}\end{array}\right.$則f(f(4))=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某同學(xué)用“五點法”畫函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)在某一個周期內(nèi)的圖象時,列表并填入了部分數(shù)據(jù),如表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
xa$\frac{π}{3}$b$\frac{5π}{6}$c
f(x)05d-50
(I)請直接寫出上表中a,b,c,d的值,并求函數(shù)f(x)的解析式;
(II)把y=f(x)圖象上所有點向右平移θ(θ>0)個單位長度,所得圖象恰好關(guān)于點($\frac{5π}{12}$,0)對稱,求θ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知角α終邊過直線l1:x-y=0和直線l2:2x+y-3=0的交點P.
求sinα,cosα,tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若曲線${C}_{1}(x-1)^{2}+{y}^{2}=1$與曲線C2:y(y-mx-m)=0有4個不同的交點,則實數(shù)m的取值范圍是(  )
A.(-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$)B.(-$\frac{\sqrt{3}}{3},0$)∪(0,$\frac{\sqrt{3}}{3}$)C.[-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$]D.(-∞,-$\frac{\sqrt{3}}{3}$)∪($\frac{\sqrt{3}}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知$\frac{sin(\frac{π}{2}-α)+sin(-π-α)}{3cos(2π+α)+cos(\frac{3π}{2}-α)}=3$.
(I)求$\frac{sinα-3cosα}{sinα+cosα}$的值;
(II)若圓C的圓心在x軸上,圓心到直線y=tanα•x的距離為$2\sqrt{5}$且圓C被直線y=tanα•x所截弦長為8,求圓C的標準方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知數(shù)列{an}的前n項和為Sn,Sn=4n2+2n,則此數(shù)列的通項公式為( 。
A.an=2n-2B.an=8n-2C.an=2n-1D.an=n2-n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=5sinxcosx-5$\sqrt{3}$cos2x+$\frac{{5\sqrt{3}}}{2}$(x∈R).
(1)求f(x)的周期和最值;
(2)求f(x)的單調(diào)增區(qū)間;
(3)寫出f(x)的圖象的對稱軸方程和對稱中心坐標.

查看答案和解析>>

同步練習(xí)冊答案