13.已知f(x),g(x)分別是定義在R上的偶函數(shù)和奇函數(shù),且f(x)+g(x)=2x,若存在x0∈[1,2]使得等式af(x0)+g(2x0)=0成立,則實數(shù)a的取值范圍是[$\frac{17}{6},\frac{257}{60}$].

分析 根據(jù)函數(shù)奇偶性,解出奇函數(shù)f(x)和偶函數(shù)g(x)的表達式,將等式af(x)+g(2x)=0,令t=2x-2-x,則t>0,通過變形可得a=t+$\frac{2}{t}$,討論出右邊在x∈[1,2]的最大值,可以得出實數(shù)a的取值范圍.

解答 解:解:∵f(x)為定義在R上的奇函數(shù),g(x)為定義在R上的偶函數(shù),
∴f(-x)=-f(x),g(-x)=g(x),
又∵由f(x)+g(x)=2-x,結(jié)合f(-x)+g(-x)=-f(x)+g(x)=2x,
∴f(x)=-$\frac{1}{2}$(2x-2-x),g(x)=$\frac{1}{2}$(2x+2-x).
等式af(x)+g(2x)=0,化簡為-$\frac{a}{2}$(2x-2-x)+$\frac{1}{2}$(22x+2-2x)=0.
∵x∈[1,2],∴$\frac{3}{2}$≤2x-2-x≤$\frac{15}{4}$,
令t=2x-2-x,則t>0,因此將上面等式整理,得:a=t+$\frac{2}{t}$,
函數(shù)h(t)=t+$\frac{2}{t}$在[$\frac{3}{2}$$,\frac{15}{4}$]遞增,$\frac{17}{6}$≤t+$\frac{2}{t}$≤$\frac{257}{60}$,
則實數(shù)a的取值范圍是[$\frac{17}{6},\frac{257}{60}$],
故答案為:[$\frac{17}{6},\frac{257}{60}$].

點評 題以指數(shù)型函數(shù)為載體,考查了函數(shù)求表達式以及不等式恒成立等知識點,屬于難題.合理地利用函數(shù)的基本性質(zhì),再結(jié)合換元法和基本不等式的技巧,是解決本題的關(guān)鍵.屬于中檔題

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

3.在非直角△ABC中,D為BC上的中點,且$\frac{\overrightarrow{CA}•\overrightarrow{CB}}{{S}_{△CAB}}$=4$\frac{{S}_{△ABD}}{\overrightarrow{AB}•\overrightarrow{AD}}$,E為邊AC上一點,2$\overrightarrow{BE}$=$\overrightarrow{BA}$+$\overrightarrow{BC}$,BE=2,則△ABC的面積的最大值為$\frac{8}{3}$.(其中S△ABC表示△ABC的面積)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知非零向量$\overrightarrow{a}$、$\overrightarrow$滿足|$\overrightarrow{a}$-$\overrightarrow$|=|$\overrightarrow{a}$+2$\overrightarrow$|,且$\overrightarrow{a}$與$\overrightarrow$的夾角的余弦值為-$\frac{1}{4}$,則$\frac{|\overrightarrow{a}|}{|\overrightarrow|}$=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知i是虛數(shù)單位,復數(shù)z滿足$\frac{z}{2+z}=i$,則復數(shù)z在復平面內(nèi)對應的點的坐標是( 。
A.$(-\frac{1}{2},\frac{1}{2})$B.(-1,1)C.$(\frac{1}{2},-\frac{1}{2})$D.(1,-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.如果實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{3x+y-6≤0}\\{x-y-2≤0}\\{x≥1}\end{array}\right.$,則z=$\frac{y+1}{x+1}$的最大值為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)的圖象與$g(x)=2co{s^2}({x-\frac{π}{6}})+1$的圖象的對稱軸相同,則f(x)的一個遞增區(qū)間為( 。
A.$[{-\frac{5π}{6},\frac{π}{6}}]$B.$[{-\frac{π}{3},\frac{π}{6}}]$C.$[{-\frac{5π}{12},\frac{π}{12}}]$D.$[{\frac{π}{12},\frac{7π}{12}}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知在體積為12π的圓柱中,AB,CD分別是上、下底面兩條不平行的直徑,則三棱錐A-BCD的體積最大值等于8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知矩形ABCD與直角梯形ABEF,∠DAF=∠FAB=90°,點G為DF的中點,AF=EF=$\frac{1}{2}AB=\sqrt{3}$,P在線段CD上運動.
(1)證明:BF∥平面GAC;
(2)當P運動到CD的中點位置時,PG與PB長度之和最小,求二面角P-CE-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知數(shù)列{an}為等差數(shù)列,a1=3且(a3-1)是(a2-1)與a4的等比中項.
(1)求an;
(2)若數(shù)列{an}的前n項和為Sn,bn=$\frac{{a}_{n}}{{S}_{n}-n}$,Tn=-b1+b2+b3+…+(-1)nbn,求Tn

查看答案和解析>>

同步練習冊答案