1.已知i是虛數(shù)單位,復數(shù)z滿足$\frac{z}{2+z}=i$,則復數(shù)z在復平面內(nèi)對應的點的坐標是( 。
A.$(-\frac{1}{2},\frac{1}{2})$B.(-1,1)C.$(\frac{1}{2},-\frac{1}{2})$D.(1,-1)

分析 利用復數(shù)的運算法則、幾何意義即可得出.

解答 解:$\frac{z}{2+z}=i$,∴z=$\frac{2i}{1-i}$=$\frac{2i(1+i)}{(1-i)(1+i)}$=-1+i.
則復數(shù)z在復平面內(nèi)對應的點的坐標是(-1,1).
故選:B.

點評 本題考查了復數(shù)的運算法則、共軛復數(shù)的定義、幾何意義,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

11.設集合A={0,-4},B={x|x2+2(a+1)x+a2-1=0,x∈R}.若B⊆A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖,平面ABCD⊥平面BCF,四邊形ABCD是菱形,∠BCF=90°.
(1)求證:BF=DF;
(2)若∠BCD=60°,且直線DF與平面BCF所成角為45°,求二面角B-AF-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知A(1,-2),B(4,2),則與$\overrightarrow{AB}$反方向的單位向量為(  )
A.(-$\frac{3}{5}$,$\frac{4}{5}$)B.($\frac{3}{5}$,-$\frac{4}{5}$)C.(-$\frac{3}{5}$,-$\frac{4}{5}$)D.($\frac{3}{5}$,$\frac{4}{5}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知等差數(shù)列{an}的首項a1=2,前n項和為Sn,等比數(shù)列{bn}的首項b1=1,且a2=b3,S3=6b2,n∈N*
(1)求數(shù)列{an}和{bn}的通項公式;
(2)數(shù)列{cn}滿足cn=bn+(-1)nan,記數(shù)列{cn}的前n項和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設復數(shù)z滿足(1+i)z=-2i,i為虛數(shù)單位,則z=( 。
A.-1+iB.-1-iC.1+iD.1-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知f(x),g(x)分別是定義在R上的偶函數(shù)和奇函數(shù),且f(x)+g(x)=2x,若存在x0∈[1,2]使得等式af(x0)+g(2x0)=0成立,則實數(shù)a的取值范圍是[$\frac{17}{6},\frac{257}{60}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知復數(shù)z滿足(2+i)z=2-i(i為虛數(shù)單位),則z=( 。
A.3+4iB.3-4iC.$\frac{3}{5}$+$\frac{4}{5}$iD.$\frac{3}{5}$-$\frac{4}{5}$i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知向量$\overrightarrow a=(m,n),\overrightarrow b=(1,-2)$,若$|\overrightarrow a|=2\sqrt{5},\overrightarrow a=λ\overrightarrow b(λ<0)$,則m-n=-6.

查看答案和解析>>

同步練習冊答案