13.空氣污染,又稱為大氣污染,是指由于人類活動或自然過程引起某些物質進入大氣中,呈現(xiàn)出足夠的濃度,達到足夠的時間,并因此危害了人體的舒適、健康和福利或環(huán)境的現(xiàn)象.全世界也越來越關注環(huán)境保護問題.當空氣污染指數(shù)(單位:μg/m3)為0~50時,空氣質量級別為一級,空氣質量狀況屬于優(yōu);當空氣污染指數(shù)為50~100時,空氣質量級別為二級,空氣質量狀況屬于良;當空氣污染指數(shù)為100~150時,空氣質量級別是為三級,空氣質量狀況屬于輕度污染;當空氣污染指數(shù)為150~200時,空氣質量級別為四級,空氣質量狀況屬于中度污染;當空氣污染指數(shù)為200~300時,空氣質量級別為五級,空氣質量狀況屬于重度污染;當空氣污染指數(shù)為300以上時,空氣質量級別為六級,空氣質量狀況屬于嚴重污染.2015年8月某日某省x個監(jiān)測點數(shù)據(jù)統(tǒng)計如下:
空氣污染指數(shù)
(單位:μg/m3
[0,50](50,100](100,150](150,200]
監(jiān)測點個數(shù)1540y10
(1)根據(jù)所給統(tǒng)計表和頻率分布直方圖中的信息求出x,y的值,并完成頻率分布直方圖;
(2)在空氣污染指數(shù)分別為50~100和150~200的監(jiān)測點中,用分層抽樣的方法抽取5個監(jiān)測點,從中任意選取2個監(jiān)測點,事件A“兩個都為良”發(fā)生的概率是多少?

分析 (1)根據(jù)頻率分布直方圖,利用頻率=$\frac{頻數(shù)}{樣本容量}$,求出x、y的值,計算直方圖中各小進行對應的高,補全頻率分布直方圖;
(2)利用列舉法求出基本事件數(shù),計算對應的概率即可.

解答 解:(1)∵$0.003×50=\frac{15}{x}$,∴x=100.
∵15+40+y+10=100,∴y=35.$\frac{40}{100×50}=0.008$,$\frac{35}{100×50}=0.007$,$\frac{10}{100×50}=0.002$,
頻率分布直方圖如圖所示:

(2)在空氣污染指數(shù)為50~100和150~200的監(jiān)測點中分別抽取4個和1個監(jiān)測點,設空氣污染指數(shù)為50~100的4個監(jiān)測點分別記為a,b,c,d;空氣污染指數(shù)為150~200的1個監(jiān)測點記為E,從中任取2個的基本事件分別為(a,b),(a,c),(a,d),(a,E),(b,c),(b,d),(b,E),(c,d),(c,E),(d,E)共10種,其中事件A“兩個都為良”包含的基本事件為(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)共6種,所以事件A“兩個都為良”發(fā)生的概率是$P(A)=\frac{6}{10}=\frac{3}{5}$.

點評 本題考查了頻率分布直方圖的應用問題,也考查了用列舉法求古典概型的概率問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.一個幾何體的三視圖如圖所示,該幾何體的體積為( 。
A.$\frac{3}{4}$B.$\frac{\sqrt{6}}{4}$C.4$\sqrt{3}$D.4$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.找出圖中三視圖所對應的實物圖形是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.畫出函數(shù)y=$\frac{x+2}{2x-3}$的圖象,并寫出值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.定義$\frac{n}{{p}_{1}+{p}_{2}+…+{p}_{n}}$為n個正數(shù)p1,p2…,pn的“均倒數(shù)”.若數(shù)列{an}的前n項的“均倒數(shù)”為$\frac{1}{3n+1}$,又bn=$\frac{{a}_{n}+2}{6}$,則$\frac{1}{_{1}_{2}}$+$\frac{1}{_{2}_{3}}$+…+$\frac{1}{_{9}_{10}}$=( 。
A.$\frac{1}{11}$B.$\frac{10}{11}$C.$\frac{9}{10}$D.$\frac{11}{12}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.給出下列幾個式子:
(1)tan25°+tan35°+$\sqrt{3}$tan25°tan35°;   
(2)$\frac{1+tan15°}{1-tan15°}$;
(3)2(sin35°cos25°+sin55°cos65°);     
(4)$\frac{2tan\frac{π}{6}}{1-ta{n}^{2}\frac{π}{6}}$.
其中結果為$\sqrt{3}$的式子的個數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知傾斜角為θ的直線l與直線m:x-2y+3=0平行,則sin2θ=( 。
A.$\frac{5}{4}$B.$\frac{4}{5}$C.$-\frac{4}{5}$D.$-\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,四邊形ABCD是梯形,AD∥BC,∠BAD=90°,DD1⊥面ABCD,DD1∥CC1,AD=4,AB=2,BC=1.
(Ⅰ)求證:BC1∥平面ADD1
(Ⅱ)若DD1=2,求平面AC1D1與平面ADD1所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.cos(-$\frac{79π}{6}$)的值為( 。
A.-$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步練習冊答案