【題目】某單位名員工參加“我愛閱讀”活動,他們的年齡在25歲至50歲之間,按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.

(I)現(xiàn)要從年齡低于40歲的員工中用分層抽樣的方法抽取12人,則年齡在第組的員工人數(shù)分別是多少?

(II)為了交流讀書心得,現(xiàn)從上述人中再隨機(jī)抽取人發(fā)言,設(shè)人中年齡在的人數(shù)為,求的數(shù)學(xué)期望;

(III)為了估計(jì)該單位員工的閱讀傾向,現(xiàn)對從該單位所有員工中按性別比例抽取的40人做是否喜歡閱讀國學(xué)類書籍進(jìn)行調(diào)查,調(diào)查結(jié)果如下表所示:(單位:人)

喜歡閱讀國學(xué)類

不喜歡閱讀國學(xué)類

合計(jì)

14

4

18

8

14

22

合計(jì)

22

18

40

根據(jù)表中數(shù)據(jù),我們能否有的把握認(rèn)為該單位員工是否喜歡閱讀國學(xué)類書籍和性別有關(guān)系?

附:,其中

0.05

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

【答案】(1)2,2,8;(2) 能有的把握認(rèn)為該單位員工是否喜歡閱讀國

學(xué)類書籍和性別有關(guān)系

【解析】試題分析:(Ⅰ)根據(jù)頻率分布直方圖的求解即可;(II)首先確定出的所有可能取值,然后分別求得相應(yīng)概率,從而求得數(shù)學(xué)期望;(Ⅲ)首先求得的值,然后與臨界表對比作出結(jié)論.

(Ⅰ)由頻率分布直方圖得前三組的人數(shù)分別為:,

所以前三組抽取的人數(shù)分別為,

(II)由上可知,的所有可能取值為,其概率分別為

所以,

(Ⅲ)假設(shè):“是否喜歡看國學(xué)類書籍和性別無關(guān)系”,根據(jù)表中數(shù)據(jù),

求得的觀測值,

查表得,從而能有的把握認(rèn)為該單位員工是否喜歡閱讀國

學(xué)類書籍和性別有關(guān)系

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)員工500人參加“學(xué)雷鋒”志愿活動,按年齡分組:第1組[25,30),第2組[30,35),第3組[35,40),第4組[40,45),第5組[45,50],得到的頻率分布直方圖如圖所示.

(1)下表是年齡的頻數(shù)分布表,求正整數(shù)a,b的值;

區(qū)間

[25,30)

[30,35)

[35,40)

[40,45)

[45,50]

人數(shù)

50

50

a

150

b


(2)現(xiàn)在要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,年齡在第1,2,3組的人數(shù)分別是多少?
(3)在(2)的前提下,從這6人中隨機(jī)抽取2人參加社區(qū)宣傳交流活動,求至少有1人年齡在第3組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,直線AB的方程為3x﹣2y﹣1=0,直線AC的方程為2x+3y﹣18=0.直線BC的方程為3x+4y﹣m=0(m≠25).
(1)求證:△ABC為直角三角形;
(2)當(dāng)△ABC的BC邊上的高為1時(shí),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,若tan =2sinC且AB=3,則△ABC的周長的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù).

(1),設(shè),試證明存在唯一零點(diǎn),并求的最大值;

(2)若關(guān)于的不等式的解集中有且只有兩個(gè)整數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),A、B、C三點(diǎn)滿足 = +
(1)求證:A、B、C三點(diǎn)共線;
(2)求 的值;
(3)已知A(1,cosx)、B(1+cosx,cosx),x∈[0, ],f(x)= ﹣(2m+ )| |的最小值為﹣ ,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,已知內(nèi)角AB,C所對的邊分別為ab,c,向量m=(2sin B,- ),n,且mn.

(1)求銳角B的大小;

(2)如果b=2,求△ABC的面積SABC的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某產(chǎn)品的廣告費(fèi)用x與銷售額y的統(tǒng)計(jì)數(shù)據(jù)如表:

廣告費(fèi)用x(萬元)

4

2

3

5

銷售額y(萬元)

49

26

39

54

根據(jù)上表可得回歸方程 = x+ 中的 為9.4,據(jù)此模型預(yù)報(bào)廣告費(fèi)用為6萬元時(shí)銷售額為(
A.63.6萬元
B.67.7萬元
C.65.5萬元
D.72.0萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點(diǎn)到坐標(biāo)原點(diǎn)的距離和它到直線的距離之比是一個(gè)常數(shù)

(1)求點(diǎn)的軌跡;

(2)若時(shí)得到的曲線是,將曲線向左平移一個(gè)單位長度后得到曲線,過點(diǎn)的直線與曲線交于不同的兩點(diǎn),過的直線分別交曲線于點(diǎn),設(shè), , ,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案