已知函數(shù),當(dāng)時(shí),.
(1)若函數(shù)在區(qū)間上存在極值點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)如果當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)k的取值范圍;
(3)試證明:.
(1);(2);(3)證明過(guò)程詳見解析.
【解析】
試題分析:本題主要考查導(dǎo)數(shù)的運(yùn)算、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、利用導(dǎo)數(shù)求函數(shù)的極值與最值等數(shù)學(xué)知識(shí),考查學(xué)生分析問(wèn)題解決問(wèn)題的能力、轉(zhuǎn)化能力和計(jì)算能力.第一問(wèn),先對(duì)求導(dǎo),利用,判斷函數(shù)的單調(diào)區(qū)間,利用單調(diào)性的變化,判斷有無(wú)極值;第二問(wèn),將已知的恒成立問(wèn)題轉(zhuǎn)化為,即轉(zhuǎn)化為求函數(shù)的最小值問(wèn)題,利用導(dǎo)數(shù)判斷的單調(diào)性,求出最小值;第三問(wèn),利用第二問(wèn)的結(jié)論進(jìn)行變形,得到類似所證結(jié)論的表達(dá)式,通過(guò)式子的累加得到所證結(jié)論.
試題解析:(1)當(dāng)x>0時(shí),,有
;
所以在(0,1)上單調(diào)遞增,在上單調(diào)遞減,
函數(shù)在處取得唯一的極值.由題意,且,解得
所求實(shí)數(shù)的取值范圍為. 4分
(2)當(dāng)時(shí), 5分
令,由題意,在上恒成立
6分
令,則,當(dāng)且僅當(dāng)時(shí)取等號(hào).
所以在上單調(diào)遞增,. 8分
因此, 在上單調(diào)遞增,.
所以.所求實(shí)數(shù)的取值范圍為 9分
(3)由(2),當(dāng)時(shí),即,即. 10分
從而. 12分
令,得,
將以上不等式兩端分別相加,得
14分
考點(diǎn):1.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;2.利用導(dǎo)數(shù)求函數(shù)的極值和最值;3.恒成立問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江西省宜春市高三考前模擬文科數(shù)學(xué)試卷(解析版) 題型:選擇題
下列有關(guān)命題的說(shuō)法正確的是( )
A.命題“若x2 =4,則x=2”的否命題為:“若x2 =4,則x≠2”
B.“x=2”是“x2—6x+8=0”的必要不充分條件
C.命題“若x=y,則cosx=cosy”的逆否命題為真命題
D.命題“存在x∈R,使得x2+x+3>0”的否定是:“對(duì)于任意的x∈R,均有x2 +x+3<0"
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江西省南昌市高三第二次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知函數(shù)是周期為2的周期函數(shù),且當(dāng)時(shí),,則函數(shù)的零點(diǎn)個(gè)數(shù)是( )
A.9 B.10 C.11 D.12
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江西省高三聯(lián)合考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題
如圖,是函數(shù)的圖像的一段,O是坐標(biāo)原點(diǎn),是該段圖像的最高點(diǎn),是該段圖像與x軸的一個(gè)交點(diǎn),則此函數(shù)的解析式為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江西省高三聯(lián)合考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
閱讀下面的程序框圖,輸出的結(jié)果是( )
A.9 B.10 C.11 D.12
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江西省高三聯(lián)合考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,滿足,關(guān)于x的不等式x2cosC+4xsinC+6≥0對(duì)任意的x∈R恒成立.
(1)求角A的值;
(2)求f(C)=2sinC·cosB的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江西省高三聯(lián)合考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
如圖,拋物線的焦點(diǎn)為F,斜率的直線過(guò)焦點(diǎn)F,與拋物線交于A、B兩點(diǎn),若拋物線的準(zhǔn)線與x軸交點(diǎn)為N,則( )
A. 1 B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江西省上饒市高三第二次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題
已知橢圓,圓,過(guò)橢圓上任一與頂點(diǎn)不重合的點(diǎn)P引圓O的兩條切線,切點(diǎn)分別為A,B,直線AB與x軸,y軸分別交于點(diǎn)M,N,則_____________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江蘇省高三百校聯(lián)合調(diào)研測(cè)試(一)數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)(),其圖像在處的切線方程為.函數(shù),.
(1)求實(shí)數(shù)、的值;
(2)以函數(shù)圖像上一點(diǎn)為圓心,2為半徑作圓,若圓上存在兩個(gè)不同的點(diǎn)到原點(diǎn)的距離為1,求的取值范圍;
(3)求最大的正整數(shù),對(duì)于任意的,存在實(shí)數(shù)、滿足,使得.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com