已知數(shù)列{an}、{bn}滿足a1=2,an-1=an(an+1-1),bn=an-1,數(shù)列{bn}的前n項(xiàng)和為Sn,n∈N*
(1)證明數(shù)列{
1
bn
}
為等差數(shù)列,并求數(shù)列{bn}的通項(xiàng)公式;
(2)用數(shù)學(xué)歸納法證明:對(duì)任意的n∈N*,有1+
n
2
S2n
1
2
+n成立.
考點(diǎn):數(shù)學(xué)歸納法,等差關(guān)系的確定,數(shù)列遞推式
專題:選作題,不等式
分析:(1)由bn-bn+1=bnbn+1,確定
1
bn+1
-
1
bn
=1
,可得數(shù)列{
1
bn
}
是首項(xiàng)為1,公差為1的等差數(shù)列,即可求數(shù)列{bn}的通項(xiàng)公式;
(2)由數(shù)學(xué)歸納法的步驟,我們先判斷n=1時(shí),不等式成立;然后假設(shè)當(dāng)n=k時(shí),不等式成立,即1+
k
2
S2k
1
2
+k
,證明當(dāng)n=k+1時(shí),不等式成立.
解答: 證明:(1)由bn=an-1得an=bn+1代入an-1=an(an+1-1)得bn=(bn+1)bn+1
整理得bn-bn+1=bnbn+1,
∵bn≠0否則an=1,與a1=2矛盾
從而得
1
bn+1
-
1
bn
=1

∵b1=a1-1=1,
∴數(shù)列{
1
bn
}
是首項(xiàng)為1,公差為1的等差數(shù)列,
1
bn
=n
,即bn=
1
n

(2)用數(shù)學(xué)歸納法證明:
①當(dāng)n=1時(shí)1+
n
2
=1+
1
2
,S2n=1+
1
2
1
2
+n=
1
2
+1
,不等式成立;
②假設(shè)當(dāng)n=k(k≥1,k∈N*)時(shí),不等式成立,即1+
k
2
S2k
1
2
+k
,那么當(dāng)n=k+1時(shí)S2k+1=1+
1
2
+…+
1
2k
+…+
1
2k+1
≥1+
k
2
+
1
2k+1
+…+
1
2k+1
>1+
k
2
+
1
2k+1
+…+
1
2k+1
2k個(gè)
=1+
k
2
+
1
2
=1+
k+1
2
-S2k+1=1+
1
2
+…+
1
2k
+…+
1
2k+1
1
2
+k+
1
2k+1
+…+
1
2k+1
1
2
+k+
1
2k
+…+
1
2k
2k個(gè)

=
1
2
+(k+1)

∴當(dāng)n=k+1時(shí),不等式成立
由①②知對(duì)任意的n∈N*,不等式成立.
點(diǎn)評(píng):數(shù)學(xué)歸納法的步驟:①證明n=1時(shí)A式成立②然后假設(shè)當(dāng)n=k時(shí),A式成立③證明當(dāng)n=k+1時(shí),A式也成立④下緒論:A式對(duì)所有的正整數(shù)n都成立.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)一個(gè)焦點(diǎn)為(-1,0),且離心率e=
2
2
的橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
上下兩頂點(diǎn)分別為A,B,直線y=kx+2交橢圓C于P,Q兩點(diǎn),直線PB與直線y=
1
2
交于點(diǎn)M.
(Ⅰ)求橢圓C的方程;
(Ⅱ)求證:A,M,Q三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)滿足f(2x)=2x+1+1,定義數(shù)列{an},a1=1,an+1=f(an)-1,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)如圖所示的程序框圖,變量a每次賦值后的結(jié)果依次記作:a1、a2、a3…an….如a1=1,a2=3….
(Ⅰ)寫a3、a4、a5;
(Ⅱ)猜想出數(shù)列{an}的一個(gè)通項(xiàng)公式;
(Ⅲ)寫出運(yùn)行該程序結(jié)束輸出的a值.(寫出過程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求和:Sn=
1
2
+
3
4
+
5
8
+
7
16
+…+
2n-1
2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=
3
5
,2an+1an+an+1=3an,n∈N.
(1)求證:數(shù)列{
1
an
-1}為等比數(shù)列;
(2)是否存在互不相等的正整數(shù)m,s,t,使m,s,t成等差數(shù)列,且am-1,as-1,at-1成等比數(shù)列?如果存在,求出所有符合條件的m,s,t,如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC內(nèi)角A,B,C所對(duì)邊長分別為a,b,c,面積S=
3
,且
AB
AC
=2.
(Ⅰ)求角A;
(Ⅱ)若c=1+b,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
1
2
,且經(jīng)過點(diǎn)(1,
3
2
).
(1)求橢圓E的方程;
(2)O為坐標(biāo)原點(diǎn),直線y=kx+m與橢圓E相交于不同的兩點(diǎn)A、B,若橢圓E上存在點(diǎn)C,使得O為△ABC的重心,試探究△ABC的面積是否為定值?若是,求出這個(gè)定值,若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別是a、b、c滿足:cosAcosC+sinAsinC+cosB=
3
2
,且a,b,c成等比數(shù)列,
(1)求角B的大小;
(2)若
a
tanA
+
c
tanC
=
2b
tanB
,a=2,求三角形ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案