【題目】下列說法中正確的有( )
A.設正六棱錐的底面邊長為1,側棱長為,那么它的體積為
B.用斜二測法作△ABC的水平放置直觀圖得到邊長為a的正三角形,則△ABC面積為
C.三個平面可以將空間分成4,6,7或者8個部分
D.已知四點不共面,則其中任意三點不共線.
【答案】ACD
【解析】
對A,根據(jù)題意求出底面積與高再求體積判定即可.
對B,根據(jù)斜二測畫法前后面積的關系求解判斷即可.
對C,分析這三個平面的位置關系再逐個討論即可.
對D,利用反證法證明即可.
對于A,正六棱錐的底面邊長為1,則S底面積=61×1×sin60°;
又側棱長為,則棱錐的高h2,
所以該棱錐的體積為VS底面積h2,A正確;
對于B,水平放置直觀圖是邊長為a的正三角形,直觀圖的面積為S′a2×sin60°,則原△ABC的面積為S=2S′=2a2a2,所以B錯誤;
對于C,若三個平面互相平行,則可將空間分為4部分;
若三個平面有兩個平行,第三個平面與其它兩個平面相交,則可將空間分為6部分;
若三個平面交于一線,則可將空間分為6部分;
若三個平面兩兩相交且三條交線平行(聯(lián)想三棱柱三個側面的關系),則可將空間分為7部分;
若三個平面兩兩相交且三條交線交于一點(聯(lián)想墻角三個墻面的關系),則可將空間分為8部分;
所以三個平面可以將空間分成4,6,7或8部分,C正確;
對于D,四點不共面,則其中任意三點不共線,否則是四點共面,所以D正確;
綜上知,正確的命題序號是ACD.
故選:ACD.
科目:高中數(shù)學 來源: 題型:
【題目】某人的月工資由基礎工資和績效工資組成2010年每月的基礎工資為2100元、績效工資為2000元從2011年起每月基礎工資比上一年增加210元、績效工資為上一年的照此推算,此人2019年的年薪為______萬元(結果精確到)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務質量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了如圖所示的折線圖.根據(jù)該折線圖,下列結論錯誤的是( )
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩(wěn)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設:實數(shù)滿足不等式,:函數(shù)無極值點.
(1)若“”為假命題,“”為真命題,求實數(shù)的取值范圍;
(2)若“為真命題”是“”的必要不充分條件,求正整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù)y=f(x),若在其定義域內存在x0,使得x0f(x0)=1成立,則稱函數(shù)f(x)具有性質M.
(1)下列函數(shù)中具有性質M的有____
①f(x)=﹣x+2
②f(x)=sinx(x∈[0,2π])
③f(x)=x,(x∈(0,+∞))
④f(x)
(2)若函數(shù)f(x)=a(|x﹣2|﹣1)(x∈[﹣1,+∞))具有性質M,則實數(shù)a的取值范圍是____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我校高一年級某研究小組經(jīng)過調查發(fā)現(xiàn):提高北環(huán)隧道的車輛通行能力可有效改善交通狀況,在一般情況下,隧道內的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米,車流密度指每千米道路上車輛的數(shù)量)的函數(shù).當隧道內的車流密度達到210輛/千米時,將造成堵塞,此時車流速度為0;當車流密度不超過30輛/千米時,車流速度為60千米/小時,研究表明:當時,車流速度是車流密度的一次函數(shù).
(1)求函數(shù)的表達式;
(2)當車流密度為多大時,車流量(單位時間內通過某觀測點的車輛數(shù),單位:輛/小時) 可以達到最大,并求出最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com