(理科)等差數(shù)列{an}的前n項(xiàng)和為Sn,且a4-a2=8,a3+a5=26,記,如果存在正整數(shù)M,使得對一切正整數(shù)n,Tn≤M都成立,則M的最小值是________.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義:如果數(shù)列{an}的任意連續(xù)三項(xiàng)均能構(gòu)成一個三角形的三邊長,則稱{an}為“三角形”數(shù)列.對于“三角形”數(shù)列{an},如果函數(shù)y=f(x)使得bn=f(an)仍為一個“三角形”數(shù)列,則稱y=f(x)是數(shù)列{an}的“保三角形函數(shù)”,(n∈N).
(1)已知{an}是首項(xiàng)為2,公差為1的等差數(shù)列,若f(x)=kx,(k>1)是數(shù)列{an}的“保三角形函數(shù)”,求k的取值范圍;
(2)已知數(shù)列{cn}的首項(xiàng)為2010,Sn是數(shù)列{cn}的前n項(xiàng)和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數(shù)列;
(3)[文科]若g(x)=lgx是(2)中數(shù)列{cn}的“保三角形函數(shù)”,問數(shù)列{cn}最多有多少項(xiàng).
[理科]根據(jù)“保三角形函數(shù)”的定義,對函數(shù)h(x)=-x2+2x,x∈[1,A],和數(shù)列1,1+d,1+2d,(d>0)提出一個正確的命題,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的各項(xiàng)均為正數(shù),記A(n)=a1+a2+…+an,B(n)=a2+a3+…+an+1,C(n)=a3+a4+…+an+2,n=1,2,….
(Ⅰ)若a1=1,a2=3,且對任意n∈N*,三個數(shù)A(n),B(n),C(n)組成等差數(shù)列,求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若三個數(shù)A(n),B(n),C(n)組成公比為q的等比數(shù)列,證明:數(shù)列{an}是公比為q的等比數(shù)列;
(Ⅲ) (理科)在(Ⅰ)的條件下,求使不等式(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)≥p
2n+1
對一切n∈N*均成立的最大實(shí)數(shù)p.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•青浦區(qū)二模)[理科]定義:如果數(shù)列{an}的任意連續(xù)三項(xiàng)均能構(gòu)成一個三角形的三邊長,則稱{an}為“三角形”數(shù)列.對于“三角形”數(shù)列{an},如果函數(shù)y=f(x)使得bn=f(an)仍為一個“三角形”數(shù)列,則稱y=f(x)是數(shù)列{an}的“保三角形函數(shù)”,(n∈N*).
(1)已知{an}是首項(xiàng)為2,公差為1的等差數(shù)列,若f(x)=kx,(k>1)是數(shù)列{an}的“保三角形函數(shù)”,求k的取值范圍;
(2)已知數(shù)列{cn}的首項(xiàng)為2010,Sn是數(shù)列{cn}的前n項(xiàng)和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數(shù)列;
(3)根據(jù)“保三角形函數(shù)”的定義,對函數(shù)h(x)=-x2+2x,x∈[1,A],和數(shù)列1,1+d,1+2d(d>0)提出一個正確的命題,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理科)已知數(shù)列{an}為等差數(shù)列,a3=3,a7=7,數(shù)列{bn}為等比數(shù)列,q=a(a≠0),a6=a6
(1)求數(shù)列的{an}、{bn}通項(xiàng)公式;
(2)已知數(shù)列cn=an•bn,求數(shù)列{cn}的前n項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江省臨海市2009-2010學(xué)年度高二下學(xué)期第一次月考數(shù)學(xué)試題 題型:解答題

(理科10分)在△中,所對的邊分別為,滿足成等差數(shù)列,,求點(diǎn)的軌跡方程.

(文科10分)設(shè)0<a,b,c<1,求證:(1-a)b,(1-b)c,(1-c)a不同時大于

 

查看答案和解析>>

同步練習(xí)冊答案