【題目】(本題滿分16分)甲方是一農(nóng)場(chǎng),乙方是一工廠,由于乙方生產(chǎn)須占用甲方的資源,因此甲方每年向乙方索賠以彌補(bǔ)經(jīng)濟(jì)損失并獲得一定凈收入.乙方在不賠付甲方的情況下,乙方的年利潤(rùn)(元)與年產(chǎn)量(噸)滿足函數(shù)關(guān)系.若乙方每生產(chǎn)一噸產(chǎn)品必須賠付甲方元(以下稱為賠付價(jià)格).
(Ⅰ)將乙方的年利潤(rùn)w (元)表示為年產(chǎn)量(噸)的函數(shù),并求出乙方獲得最大利潤(rùn)的年產(chǎn)量;
(Ⅱ)甲方每年受乙方生產(chǎn)影響的經(jīng)濟(jì)損失金額(元),在乙方按照獲得最大利潤(rùn)的產(chǎn)量進(jìn)行生產(chǎn)的前提下,甲方要在索賠中獲得最大凈收入,應(yīng)向乙方要求的賠付價(jià)格是多少?
【答案】(Ⅰ)年利潤(rùn)(),取得最大年利潤(rùn)的年產(chǎn)量;(Ⅱ).
【解析】
(1)解法一:因?yàn)橘r付價(jià)格為s元/噸,所以乙方的實(shí)際年利潤(rùn)為:
因?yàn)?/span>,所以當(dāng)時(shí),取得最大值.
所以乙方取得最大年利潤(rùn)的年產(chǎn)量(噸).
解法二:因?yàn)橘r付價(jià)格為s元/噸,所以乙方的實(shí)際年利潤(rùn)為:.
由,令得.
當(dāng)時(shí),;當(dāng)時(shí),所以時(shí),取得最大值.
因此乙方取得最大年利潤(rùn)的年產(chǎn)量(噸).
(2)設(shè)甲方凈收入為元,則.
將代入上式,得到甲方凈收入與賠付價(jià)格之間的函數(shù)關(guān)系式 .
又,令,得.
當(dāng)時(shí),;當(dāng)時(shí),,所以時(shí),取得最大值.因此甲方向乙方要求賠付價(jià)格 (元/噸)時(shí),獲最大凈收入。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)為隨機(jī)變量,從棱長(zhǎng)為1的正方體的12條棱中任取兩條,當(dāng)兩條棱相交時(shí),;當(dāng)兩條棱平行時(shí),的值為兩條棱之間的距離;當(dāng)兩條棱異面時(shí),.
(1)求概率;
(2)求的分布列,并求其數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某網(wǎng)站從春節(jié)期間參與收發(fā)網(wǎng)絡(luò)紅包的手機(jī)用戶中隨機(jī)抽取名進(jìn)行調(diào)查,將受訪用戶按年齡分成組: , ,…, ,并整理得到如下頻率分布直方圖:
(Ⅰ)求的值;
(Ⅱ)從春節(jié)期間參與收發(fā)網(wǎng)絡(luò)紅包的手機(jī)用戶中隨機(jī)抽取一人,估計(jì)其年齡低于歲的概率;
(Ⅲ)估計(jì)春節(jié)期間參與收發(fā)網(wǎng)絡(luò)紅包的手機(jī)用戶的平均年齡.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,ABCD為矩形,平面PAD⊥平面ABCD.
(1)求證:AB⊥PD;
(2)若∠BPC=90°,PB= ,PC=2,問AB為何值時(shí),四棱錐P﹣ABCD的體積最大?并求此時(shí)平面BPC與平面DPC夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)有兩個(gè)極值點(diǎn),其中,且,則方程的實(shí)根個(gè)數(shù)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)監(jiān)測(cè),在海濱某城市附近的海面有一臺(tái)風(fēng). 臺(tái)風(fēng)中心位于城市的東偏南方向、距離城市的海面處,并以的速度向西偏北方向移動(dòng)(如圖示).如果臺(tái)風(fēng)侵襲范圍為圓形區(qū)域,半徑,臺(tái)風(fēng)移動(dòng)的方向與速度不變,那么該城市受臺(tái)風(fēng)侵襲的時(shí)長(zhǎng)為_____ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f0(x)= (x>0),設(shè)fn(x)為fn﹣1(x)的導(dǎo)數(shù),n∈N* .
(1)求2f1( )+ f2( )的值;
(2)證明:對(duì)任意n∈N* , 等式|nfn﹣1( )+ fn( )|= 都成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高級(jí)中學(xué)共有學(xué)生2000名,各年級(jí)男、女生人數(shù)如下表:
高一年級(jí) | 高二年級(jí) | 高三年級(jí) | |
女生 | 373 | x | y |
男生 | 377 | 370 | z |
已知在全校學(xué)生中隨機(jī)抽取1名,抽到高二年級(jí)女生的概率是0.19.
(1)求的值;
(2)現(xiàn)用分層抽樣的方法在全校抽取48名學(xué)生,問應(yīng)該在高三年級(jí)抽取多少名?
(3)已知,,求高三年級(jí)中女生比男生多的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某家具廠有方木料90 ,五合板600,準(zhǔn)備加工成書桌和書櫥出售.已知生產(chǎn)每張書桌需要方木料0.1 ,五合板2 ,生產(chǎn)每個(gè)書櫥需要方木料0.2,五合板1 ,出售一張書桌可獲利潤(rùn)80元,出售一個(gè)書櫥可獲利潤(rùn)120元.請(qǐng)問怎樣安排生產(chǎn)可使所得利潤(rùn)最大?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com