(本題滿分12分)已知:
(1)求的取值范圍;
(2)求函數(shù)的最大值和最小值及對應(yīng)的x值。

(1)
(2)當,,此時;當,, 此時

解析試題分析:(1)由, -----------------------2分
  ∴ ----------------------5分
(2)由(1)
。    ---------10分
,,此時  
,, 此時       ------------12分
考點:本題主要考查對數(shù)函數(shù)的性質(zhì)及其應(yīng)用,二次函數(shù)圖象和性質(zhì)。
點評:典型題,復(fù)合對數(shù)函數(shù)問題,應(yīng)特別注意其自身定義域。本題首先化成關(guān)于對數(shù)函數(shù)的二次函數(shù),利用二次函數(shù)圖象和性質(zhì)得到最值。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分15分)
如圖,某小區(qū)有一邊長為2(單位:百米)的正方形地塊OABC,其中OAE是一個游泳池,計劃在地塊OABC內(nèi)修一條與池邊AE相切的直路(寬度不計),切點為M,并把該地塊分為兩部分.現(xiàn)以點O為坐標原點,以線段OC所在直線為x軸,建立平面直角坐標系,若池邊AE滿足函數(shù))的圖象,且點M到邊OA距離為

(1)當時,求直路所在的直線方程;
(2)當t為何值時,地塊OABC在直路不含泳池那側(cè)的面積取到最大,最大值是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)某民營企業(yè)生產(chǎn)A、B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤y與投資額x成正比,其關(guān)系如圖1所示;B產(chǎn)品的利潤y與投資額x的算術(shù)平方根成正比,其關(guān)系如圖2所示(利潤與投資額的單位均為萬元). (1)分別將A、B兩種產(chǎn)品的利潤表示為投資額的函數(shù)關(guān)系式;(2)該企業(yè)已籌集到10萬元資金,并全部投入A、B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)某企業(yè)投入81萬元經(jīng)銷某產(chǎn)品,經(jīng)銷時間共60個月,市場調(diào)研表明,該企業(yè)在經(jīng)銷這個產(chǎn)品期間第個月的利潤(單位:萬元),為了獲得更多的利潤,企業(yè)將每月獲得的利潤投入到次月的經(jīng)營中,記第個月的當月利潤率,例如:
(Ⅰ); (Ⅱ)求第個月的當月利潤率
(Ⅲ)該企業(yè)經(jīng)銷此產(chǎn)品期間,哪個月的當月利潤率最大,并求該月的當月利潤率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題14分)設(shè)函數(shù)的定義域為,
(Ⅰ)若,求的取值范圍;
(Ⅱ)求的最大值與最小值,并求出最值時對應(yīng)的的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)已知,
1)若,求方程的解;
2)若對上有兩個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)已知函數(shù)的圖象經(jīng)過點(2,),其中
(1)求的值;
(2)若函數(shù) ,解關(guān)于的不等式。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分14分)設(shè)函數(shù)的定義域為,記函數(shù)的最大值為.
(1)求的解析式;(2)已知試求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某商品的市場日需求量和日產(chǎn)量均為價格的函數(shù),且
,日成本C關(guān)于日產(chǎn)量的關(guān)系為
(1)當時的價格為均衡價格,求均衡價格;
(2)當時日利潤最大,求

查看答案和解析>>

同步練習冊答案