13.已知集合A={x|x2+x-6<0},B={-2,-1,0,1,2},那么A∩B=(  )
A.{-2,-1,0,1}B.{-2,-1,1}C.{-1,1,2}D.{-1,0,1,2}

分析 容易得出A={x|-3<x<2},然后進(jìn)行交集的運(yùn)算即可.

解答 解:A={x|-3<x<2};
∴A∩B={-2,-1,0,1}.
故選A.

點(diǎn)評(píng) 考查一元二次不等式的解法,描述法、列舉法表示集合的定義,以及交集的運(yùn)算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,正三角形ABE與菱形ABCD所在的平面互相垂直,AB=2,∠ABC=60°,M是AB的中點(diǎn).
(I)求證:EM⊥AD;
(II)求二面角A-BE-C的余弦值;
(III)在線段EC上是否存在點(diǎn)P,使得直線AP與平面ABE所成的角為45°,若存在,求出$\frac{EP}{EC}$的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知等邊三角形PAB的邊長為4,四邊形ABCD為正方形,平面PAB⊥平面ABCD,E,F(xiàn),G,H分別是線段AB,CD,PD,PC上的點(diǎn).

(1)如圖①,若G為線段PD的中點(diǎn),BE=DF=1,證明:PB∥平面EFG;
(2)如圖②,若E,F(xiàn)分別是線段AB,CD的中點(diǎn),DG=3GP,GH=$\frac{1}{3}$HP,求二面角H-EF-G的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在(2x-3)5•(4-x-1)的展開式中含(2x2的項(xiàng)為255.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖,在由5個(gè)邊長為1,一個(gè)頂角為60°的菱形組成的圖形中,$\overrightarrow{AB}$•$\overrightarrow{CD}$=-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,正三棱柱ABC-A1B1C1中,側(cè)棱$A{A_1}=\sqrt{3}$,AB=2,D,E分別為棱AC,B1C1的中點(diǎn),M,N分別為線段AC1和BE的中點(diǎn).
(1)求證:直線MN∥平面ABC;
(2)求二面角C-BD-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.當(dāng)x=$\frac{π}{6}$時(shí),函數(shù)f(x)=cos2x+sinx(|x|≤$\frac{π}{4}$)取最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知y2=4x拋物線,焦點(diǎn)記為F,過點(diǎn)F作直線l交拋物線于A,B兩點(diǎn),則$|{AF}|-\frac{2}{{|{BF}|}}$的最小值為( 。
A.$2\sqrt{2}-2$B.$\frac{5}{6}$C.$3-\frac{3}{2}\sqrt{2}$D.$2\sqrt{3}-2$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.現(xiàn)采取隨機(jī)模擬的方法估計(jì)某運(yùn)動(dòng)員射擊擊中目標(biāo)的概率.先由計(jì)算器給出0到9之間取整數(shù)的隨機(jī)數(shù),指定0,1,2,3表示沒有擊中目標(biāo),4,5,6,7,8,9表示集中目標(biāo),以4個(gè)隨機(jī)數(shù)為一組,代表射擊4次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了20組如下的隨機(jī)數(shù):
7527  0293   7140   9857   0347   4373   8636   6947   1417   4698
0371  6233   2616   8045   6011   3661   9597   7424   7610   4281
根據(jù)以上數(shù)據(jù)估計(jì)該運(yùn)動(dòng)員射擊四次至少擊中三次的概率為:0.4.

查看答案和解析>>

同步練習(xí)冊(cè)答案