在△ABC中,角A、B、c的對(duì)邊分別為a、b、c,若bcosA-acosB=
1
2
c.
(I)求證:tanB=3tanA;
(Ⅱ)若cosC=
5
5
,求角A的值.
(Ⅰ)∵bcosA-acosB=
1
2
c,
∴由正弦定理得:sinBcosA-sinAcosB=
1
2
sinC,…1
∴sinBcosA-sinAcosB=
1
2
sin(A+B)…3
∴2sinBcosA-2sinAcosB=sinAcosB+cosAsinB,…4
∴sinBcosA=3sinAcosB,
∵0<A<π,0<B<π,
∴cosA>0,cosB>0,…5
∴tanB=3tanA;…6
(Ⅱ)∵cosC=
5
5

∴0<C<
π
2
,sinC=
2
5
5
,tanC=2,…7
∴tanC=tan[π-(A+B)]=2,即tan(A+B)=-2,…8
tanA+tanB
1-tanAtanB
=-2,…9
∵tanB=3tanA,
4tanA
1-3tan2A
=-2,…10
∴tanA=1或tanA=-
1
3
,…11
∵cosA>0,
∴tanA=1,A=
π
4
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,則下列關(guān)系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且bsinA=
3
acosB

(1)求角B的大;
(2)若a=4,c=3,D為BC的中點(diǎn),求△ABC的面積及AD的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c并且滿(mǎn)足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C所對(duì)邊的長(zhǎng)分別為a,b,c,且a=
5
,b=3,sinC=2sinA
,則sinA=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案