已知異面直線a,b分別在平面α,β內(nèi),且αβc,那么直線c一定(  )

A.與a,b都相交

B.只能與a,b中的一條相交

C.至少與a,b中的一條相交

D.與ab都平行

 

C

【解析】ca,b都不相交,則cab都平行,根據(jù)公理4,知ab,與ab異面矛盾.故選C.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試選擇填空限時(shí)訓(xùn)練1練習(xí)卷(解析版) 題型:選擇題

若變量x,y滿足約束條件z5yx的最大值為a,最小值為b,則ab的值是( )

A48 B30

C24 D16

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題5第2課時(shí)練習(xí)卷(解析版) 題型:選擇題

已知P為雙曲線C1上的點(diǎn),點(diǎn)M滿足| |1,且·0,則當(dāng)| |取得最小值時(shí)的點(diǎn)P到雙曲線C的漸近線的距離為( )

A. B. C4 D5

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題4第3課時(shí)練習(xí)卷(解析版) 題型:解答題

如圖,在四棱錐PABCD中,平面PAD平面ABCD,ABDC,PAD是等邊三角形,已知AD4,BD4AB2CD8.

(1)設(shè)MPC上的一點(diǎn),證明:平面MBD平面PAD;

(2)當(dāng)M點(diǎn)位于線段PC什么位置時(shí),PA平面MBD?

(3)求四棱錐PABCD的體積.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題4第2課時(shí)練習(xí)卷(解析版) 題型:填空題

如圖,AB為圓O的直徑,點(diǎn)C在圓周上(異于點(diǎn)A,B),直線PA垂直于圓O所在的平面,點(diǎn)M為線段PB的中點(diǎn).有以下四個(gè)命題:

PA平面MOBMO平面PAC;OC平面PAC;平面PAC平面PBC.

其中正確的命題是________(填上所有正確命題的序號(hào))

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題4第1課時(shí)練習(xí)卷(解析版) 題型:解答題

一個(gè)幾何體的三視圖如下圖所示,已知正()視圖是底邊長為1的平行四邊形,側(cè)()視圖是一個(gè)長為,寬為1的矩形,俯視圖為兩個(gè)邊長為1的正方形拼成的矩形.

(1)求該幾何體的體積V;

(2)求該幾何體的表面積S.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題4第1課時(shí)練習(xí)卷(解析版) 題型:選擇題

已知某幾何體的三視圖如圖所示,其中俯視圖中圓的直徑為4,該幾何體的體積為V1,直徑為4的球的體積為V2,則(  )

A12 B21 C11 D14

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題3第2課時(shí)練習(xí)卷(解析版) 題型:選擇題

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a415,S555,則數(shù)列{an}的公差是( )

A B4 C.-4 D.-3

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題2第2課時(shí)練習(xí)卷(解析版) 題型:選擇題

對(duì)于集合{a1,a2,an}和常數(shù)a0,定義:ω

為集合{a1a2,,an}相對(duì)a0正弦方差,則集合相對(duì)a0正弦方差( )

A B C D.與a0有關(guān)的一個(gè)值

 

查看答案和解析>>

同步練習(xí)冊(cè)答案