考點:對數(shù)函數(shù)圖象與性質(zhì)的綜合應(yīng)用
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意可推出f
1(a
i+1)-f
1(a
i)=
-
=
;f
2(a
i+1)-f
2(a
i)=log
2014-log
2014=log
2014>0;f
3(a
i+1)-f
3(a
i)=
-
=-2015(
-
)<0;從而代入求解.
解答:
解:∵f
1(a
i+1)-f
1(a
i)=
-
=
;
故I
1=|f
1(a
2)-f
1(a
1)|+|f
1(a
3)-f
1(a
2)|+…+|f
1(a
2015)-f
1(a
2014)|
=
×2014=
,
∵f
2(a
i+1)-f
2(a
i)=log
2014-log
2014=log
2014>0;
故I
2=|f
2(a
2)-f
2(a
1)|+|f
2(a
3)-f
2(a
2)|+…+|f
2(a
2015)-f
2(a
2014)|
=log
2014(
×
×…×
)=log
20142015>1;
f
3(a
i+1)-f
3(a
i)=
-
=-2015(
-
)<0;
故I
3=|f
3(a
2)-f
3(a
1)|+|f
3(a
3)-f
3(a
2)|+…+|f
3(a
2015)-f
3(a
2014)|
=2015[(1-
)+(
-
)+…+
-
]
=2015(1-
)=2014,
故I
1<I
2<I
3;
故選B.
點評:本題考查了對數(shù)的運算法則、含絕對值符號式的運算,屬于基礎(chǔ)題.