求過點A(-2,1)B(2,3),且在兩坐標上截距之和為4的圓的方程
 
考點:圓的一般方程
專題:直線與圓
分析:用待定系數(shù)法,根據(jù)已知條件中給的均為已知點的坐標,設(shè)其方程為一般式,構(gòu)造方程(組),解方程(組)即可得到答案.
解答: 解:設(shè)所求圓的方程為x2+y2+Dx+Ey+F=0.
令y=0得x2+Dx+F=0,
∴圓在x軸上的截距之和為x1+x2=-D,
令x=0得y2+Ey+F=0,
∴圓在y軸的截距之和為y1+y2=-E,
由題設(shè)x1+x2+y1+y2=-(D+E)=4,
∴D+E=-4 ①
又A(-2,1)B(2,3),在圓上,
∴4+1-2D+E+F=0,②
4+9+4D+3E+F=0,③
由①②③解得D=0,E=-4,F(xiàn)=-1.
故所求圓的方程為:x2+y2-4y-1=0.
故答案為:x2+y2-4y-1=0.
點評:本題主要考查圓的一般方程的求解,根據(jù)條件利用待定系數(shù)法是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ex,x<0
lnx,x>0
,則f[f(
1
e
)]=(  )
A、
1
e
B、-e
C、e
D、-
1
e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程|x+y|=
(x-1)2+(y-1)2
所表示的曲線是( 。
A、雙曲線B、拋物線
C、橢圓D、不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
x2+x,x≥0
-x2+x,x<0
,則不等式f(x2-x+1)<12解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足對任意x,y∈R,都有f(x+y)=f(x)f(y)-f(x)-f(y)+2成立,且x>0時,f(x)>2.
(1)求f(0)的值,并證明:當x<0時,1<f(x)<2;
(2)判斷f(x)的單調(diào)性并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項和為Sn,若a2=3,S5+a5=2,Sm=0,則m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+1,(0<x≤1)
2x,(-1≤x≤0)
且f(m)=
5
4
,則m的值為(  )
A、log2
5
4
B、
1
2
C、-
1
2
D、±
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足f(0)=0,f(x)+f(1-x)=1,f(
x
3
)=
1
2
f(x),且當0≤x1<x2≤1時.f(x1)≤f(x2),求f(
1
2013
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,2sinθ),
b
=(sin(θ+
π
3
),1),θ∈R.
(1)若
a
b
,求tanθ的值;
(2)若
a
b
,且θ∈(0,
π
2
),求θ的值.

查看答案和解析>>

同步練習(xí)冊答案