如圖所示,在直角梯形ABCD中,,CD=DA=a,AB=2a,SA⊥平面ABCD,且SA=a.

(1)求證:△SAD、△SAB、△SCB、△SDC都是直角三角形;

(2)在SD上取點M,SC交平面ABM于N,

求證:四邊形ABNM為直角梯形.

答案:略
解析:

(1)證明:∵SA⊥平面ABCD,∴△SAD,△SAB是直角三角形.

,∴CDSA,∴△SDC是直角三角形.

連結(jié)AC,易證ACBC.又BCSA,∴BC⊥平面SAC

∴△SBC是直角三角形

(2)證明:∵CDAB

CD∥平面ABNM

MNAB

NMAB,∴四邊形ABNM是梯形.

CD⊥平面SAD,∴NM⊥平面SAD.∴NMAM

∴四邊形ABNM是直角梯形.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,在直角梯形ABCD中,|AD|=3,|AB|=4,|BC|=
3
,曲線段DE上任一點到A、B兩點的距離之和都相等.
(1)建立適當?shù)闹苯亲鴺讼,求曲線段DE的方程;
(2)過C能否作一條直線與曲線段DE相交,且所得弦以C為中點,如果能,求該弦所在的直線的方程;若不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在直角梯形ABCP中,AP∥BC,AP⊥AB,AB=BC=
12
AP=2,D是AP的中點,E,F(xiàn),G分別為PC,PD,CB的中點,將△PCD沿CD折起,使得PD⊥平面ABCD.
(1)求證:AP∥平面EFG;
(2)求二面角G-EF-D的大。
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在直角梯形OABC中,∠COA=∠OAB=
π2
,OA=OS=AB=1,OC=2,點M是棱SB的中點,N是OC上的點,且ON:NC=1:3.
(1)求異面直線MN與BC所成的角;
(2)求MN與面SAB所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在直角梯形ABCP中,AP∥BC,AB⊥AP,AB=BC=3,AP=7,CD⊥AP,現(xiàn)將△PCD沿折線CD折成直二面角P-CD-A,設E,F(xiàn)分別是PD,BC的中點.
(Ⅰ)求證:EF∥平面PAB;
(Ⅱ)求直線BE與平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•藍山縣模擬)如圖所示,在直角梯形ABCD中,∠A=90°,∠C=45°,AB=2,AD=1,E是AB中點,F(xiàn)是DC上的點,且EF∥AD,現(xiàn)以EF為折痕將四邊形AEFD向上折起,使平面AEFD垂直平面EBCF,連AC,DC,BA,BD,BF,

(1)求證:CB⊥平面DFB;
(2)求二面角B-AC-D的余弦值.

查看答案和解析>>

同步練習冊答案