設(shè)數(shù)列的前項(xiàng)和為,
已知,,,是數(shù)列的前項(xiàng)和.
(1)求數(shù)列的通項(xiàng)公式;(2)求;
(3)求滿足的最大正整數(shù)的值.
(1);(2);(3)1
【解析】
試題分析:(1)由可構(gòu)造的遞推式,從而得到通項(xiàng)的遞推式,即可得到通項(xiàng)公式.
(2)由(1)以及數(shù)列,可得到數(shù)列為等差數(shù)列,即可求出通項(xiàng)公式,再根據(jù)等差數(shù)列的前n和公式可得及輪.
(3)由(2)可得.所以由通項(xiàng)即.即可求得的值,再解不等式即可得結(jié)論.
(1)解:∵當(dāng)時,,
∴
∴
∵,,
∴
∴數(shù)列是以為首項(xiàng),公比為的等比數(shù)列.
∴
(2)解:由(1)得:,
∴
(3)解:
令>2013/2014,解得:n<1007/1006
故滿足條件的最大正整數(shù)的值為1
考點(diǎn):1.?dāng)?shù)列的前n項(xiàng)和與通項(xiàng)的關(guān)系.2.等差數(shù)列的求和公式.3.不等式的證明.4.通項(xiàng)的思想解決數(shù)列問題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省黃岡市高三5月適應(yīng)性考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
設(shè),集合是奇數(shù)集,集合是偶數(shù)集.若命題,則( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省黃岡市高三第二學(xué)期三月月考文科數(shù)學(xué)試卷(解析版) 題型:選擇題
下面幾個命題中,假命題是( )
A.“若,則”的否命題;
B.“,函數(shù)在定義域內(nèi)單調(diào)遞增”的否定;
C.“是函數(shù)的一個周期”或“是函數(shù)的一個周期”;
D.“”是“”的必要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省黃岡市高三下學(xué)期三月月考理科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知點(diǎn),若為雙曲線的右焦點(diǎn),是該雙曲線上且在第一象限的動點(diǎn),則的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省黃岡市高三下學(xué)期三月月考理科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知函數(shù).若,則的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省黃岡市高三下學(xué)期三月月考文科數(shù)學(xué)試卷(解析版) 題型:填空題
在三棱錐中,,平面ABC, . 若其主視圖,俯視圖如圖所示,則其左視圖的面積為 。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省黃岡市高三下學(xué)期三月月考文科數(shù)學(xué)試卷(解析版) 題型:選擇題
設(shè),,若,則的最小值為( )
A. B.6 C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省武漢市高三下學(xué)期4月調(diào)研測試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
在△ABC中,角A,B,C的對邊分別為,若A,B,C成等差數(shù)列,成等比數(shù)列,則( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北省宜昌示范教學(xué)協(xié)作體高一下學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:選擇題
在中,若,則與的大小關(guān)系為( )
A. B. C. D.、的大小關(guān)系不能確定
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com