科目:高中數學 來源: 題型:
給定橢圓C:,稱圓心在坐標原點O,半徑為的圓是橢圓C的“伴隨圓”,已知橢圓C的兩個焦點分別是.
(1)若橢圓C上一動點M1滿足||+||=4,求橢圓C及其“伴隨圓”的方程;
(2)在(1)的條件下,過點P(0,t)(t<0)作直線l與橢圓C只有一個交點,且截橢圓C的“伴隨圓”所得弦長為2,求P點的坐標;
(3)已知m+n=﹣(0,π)),是否存在a,b,使橢圓C的“伴隨圓”上的點到過兩點(m,m2),(n,n2)的直線的最短距離.若存在,求出a,b的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
已知數列的前項和為,且對于任意的,恒有,
設,
(1)求證數列是等比數列;
(2)求數列,的通項公式和;
(3)設,
①判定數列的單調性,并求數列的最大值.
②求.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com