精英家教網 > 高中數學 > 題目詳情
點P在曲線y=sin2x-cos2x+7上移動,過P點的切線的傾斜角取值范圍是

A.[0,π)                               B.[0,]∪[,π)

C.[0,)∪(,)                    D.[0,arctan]∪[π-arctan,π)

D

解析:設P(x0,y0)為y=sin2x-cos2x+7上任一點,

則y′=cos2x+2cosx·sinx=sin(2x+),

∴y′|x=x0=sin(2x0+),當x0∈R時,過點P(x0,y0)的切線的斜率的取值范圍為[-,].∴切線傾斜角的取值范圍為[0,arctan]∪[π-arctan,π).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網選做題本題包括A,B,C,D四小題,請選定其中 兩題 作答,每小題10分,共計20分,
解答時應寫出文字說明,證明過程或演算步驟.
A選修4-1:幾何證明選講
自圓O外一點P引圓的一條切線PA,切點為A,M為PA的中點,過點M引圓O的割線交該圓于B、C兩點,且∠BMP=100°,∠BPC=40°,求∠MPB的大。
B選修4-2:矩陣與變換
已知二階矩陣A=
ab
cd
,矩陣A屬于特征值λ1=-1的一個特征向量為α1=
1
-1
,屬于特征值λ2=4的一個特征向量為α2=
3
2
.求矩陣A.
C選修4-4:坐標系與參數方程
在平面直角坐標系xOy中,已知曲線C的參數方程為
x=2cosα
y=sinα
(α為參數)
.以直角坐標系原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為ρcos(θ-
π
4
)=2
2
.點
P為曲線C上的動點,求點P到直線l距離的最大值.
D選修4-5:不等式選講
若正數a,b,c滿足a+b+c=1,求
1
3a+2
+
1
3b+2
+
1
3c+2
的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知在平面直角坐標系xOy內,點P(x,y)在曲線C:
x=1+cosθ
y=sinθ
為參數,θ∈R)上運動.以Ox為極軸建立極坐標系,直線l的極坐標方程為ρcos(θ+
π
4
)=0

(Ⅰ)寫出曲線C的標準方程和直線l的直角坐標方程;
(Ⅱ)若直線l與曲線C相交于A、B兩點,點M在曲線C上移動,試求△ABM面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

定義變換T:
cosθ•x+sinθ•y=x′
′sinθ•x-cosθ•y=y′
可把平面直角坐標系上的點P(x,y)變換到這一平面上的點P′(x′,y′).特別地,若曲線M上一點P經變換公式T變換后得到的點P'與點P重合,則稱點P是曲線M在變換T下的不動點.
(1)若橢圓C的中心為坐標原點,焦點在x軸上,且焦距為2
2
,長軸頂點和短軸頂點間的距離為2.求該橢圓C的標準方程.并求出當θ=arctan
3
4
時,其兩個焦點F1、F2經變換公式T變換后得到的點F1和F2的坐標;
(2)當θ=arctan
3
4
時,求(1)中的橢圓C在變換T下的所有不動點的坐標;
(3)試探究:中心為坐標原點、對稱軸為坐標軸的雙曲線在變換T:
cosθ•x+sinθ•y=x′
′sinθ•x-cosθ•y=y′
θ≠
2
,k∈Z)下的不動點的存在情況和個數.

查看答案和解析>>

科目:高中數學 來源: 題型:

選修4-4:坐標系與參數方程
已知在平面直角坐標系xOy內,點P(x,y)在曲線C:
x=1+cosθ
y=sinθ
為參數,θ∈R)上運動.以Ox為極軸建立極坐標系,直線l的極坐標方程為ρcos(θ+
π
4
)=0

(Ⅰ)寫出曲線C的標準方程和直線l的直角坐標方程;
(Ⅱ)若直線l與曲線C相交于A、B兩點,點M在曲線C上移動,試求△ABM面積的最大值,并求此時M點的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

(A)(幾何證明選講選做題)如圖,已知Rt△ABC的兩條直角邊AC,BC的長分別為3cm,4cm,以AC為直徑作圓與斜邊AB交于點D,則BD的長為=
16
5
16
5
;
(B)(不等式選講選做題)關于x的不等式|x-1|+|x-2|≤a2+a+1的解集為空集,則實數a的取值范圍是
(-1,0)
(-1,0)
;
(C)(坐標系與參數方程選做題)已知極坐標的極點在直角坐標系的原點O處,極軸與x軸的正半軸重合,曲線C的參數方程為
x=3cosθ
y=sinθ
(θ為參數),直線l的極坐標方程為ρcos(θ-
π
3
)=6
.點P在曲線C上,則點P到直線l的距離的最小值為
6-
3
6-
3

查看答案和解析>>

同步練習冊答案