分析 (1)由題意知:A=3,ω=2,由3sin(2×$\frac{2π}{3}$+φ)=-3,得φ+$\frac{4π}{3}$=-$\frac{π}{2}$+2kπ,k∈Z,而0<φ<$\frac{π}{2}$,所以確定φ的值,故f(x)=3sin(2x+$\frac{π}{6}$);
(2)根據(jù)正弦函數(shù)的單調(diào)性得到2kπ-$\frac{2π}{3}$≤2x≤2kπ+$\frac{π}{2}$,解出即可.
解答 解:(1)由題意知:A=3,ω=2,
由3sin(2×$\frac{2π}{3}$+φ)=-3,
得φ+$\frac{4π}{3}$=-$\frac{π}{2}$+2kπ,k∈Z,
即φ=$\frac{-11π}{6}$+2kπ,k∈Z,
而0<φ<$\frac{π}{2}$,所以k=1,φ=$\frac{π}{6}$,
故f(x)=3sin(2x+$\frac{π}{6}$).
(2)由題意得:2kπ-$\frac{2π}{3}$≤2x≤2kπ+$\frac{π}{2}$,
即2kπ-$\frac{2π}{3}$≤2x≤2kπ+$\frac{π}{3}$,
∴kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,
故函數(shù)的遞增區(qū)間是[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z.
點(diǎn)評(píng) 本題主要考察了正弦函數(shù)的圖象和性質(zhì),由y=Asin(ωx+φ)的部分圖象確定其解析式,屬于基本知識(shí)的考查.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | e2 | D. | 2e2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=log2x | B. | f(x)=x|x| | C. | f(x)=x2+1 | D. | f(x)=2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com