已知函數(shù)f(x)=ax3+bx(x∈R),
(1)若函數(shù)f(x)的圖象在點x=3處的切線與直線24x-y+1=0平行,函數(shù)f(x)在x=1處取得極值,求函數(shù)f(x)的解析式,并確定函數(shù)的單調(diào)遞減區(qū)間;
(2)若a=1,且函數(shù)f(x)在[-1,1]上是減函數(shù),求b的取值范圍.
【答案】分析:(1)先對函數(shù)f(x)進行求導,根據(jù) f'(1)=0,f'(3)=24確定函數(shù)的解析式,然后令f'(x)<0求單調(diào)遞減區(qū)間.
(2)將a=1代入函數(shù)f(x)后對函數(shù)進行求導,根據(jù)f′(x)=3x2+b≤0在[-1,1]上恒成立轉化為b≤-3x2在[-1,1]上恒成立求出b的值.
解答:解:(1)已知函數(shù)f(x)=ax3+bx(x∈R),∴f′(x)=3ax2+b
又函數(shù)f(x)圖象在點x=3處的切線與直線24x-y+1=0平行,
且函數(shù)f(x)在x=1處取得極值,∴f′(3)=27a+b=24,
且f′(1)=3a+b=0,解得a=1,b=-3
∴f(x)=x3-3x
令f′(x)=3x2-3≤0得:-1≤x≤1,所以函數(shù)的單調(diào)遞減區(qū)間為[-1,1]
(2)當a=1時,f(x)=x3+bx(x∈R),又函數(shù)f(x)在[-1,1]上是減函數(shù)
∴f′(x)=3x2+b≤0在[-1,1]上恒成立
即b≤-3x2在[-1,1]上恒成立∴b≤-3
當b=-3時,f′(x)不恒為0,∴b≤-3
點評:本題主要考查函數(shù)的增減性與其導函數(shù)的正負的關系.屬基礎題.