分析 (Ⅰ)取PB的中點(diǎn)F,連接AF,EF,由三角形的中位線定理可得四邊形ADEF是平行四邊形.得到DE∥AF,再由線面平行的判定可得ED∥面PAB;
(Ⅱ)法一、取BC的中點(diǎn)M,連接AM,由題意證得A在以BC為直徑的圓上,可得AB⊥AC,找出二面角A-PC-D的平面角.求解三角形可得二面角A-PC-D的余弦值.
法二、由題意證得AB⊥AC.又面PAC⊥平面ABCD,可得AB⊥面PAC.以A為原點(diǎn),$\overrightarrow{AC},\overrightarrow{AB}$方向分別為x軸正方向,y軸正方向建立空間直角坐標(biāo)系.求出P的坐標(biāo),再求出平面PDC的一個(gè)法向量,由圖可得$\overrightarrow{AB}$為面PAC的一個(gè)法向量,由兩法向量所成角的余弦值可得二面角A-PC-D的余弦值.
解答 (Ⅰ)證明:取PB的中點(diǎn)F,連接AF,EF.
∵EF是△PBC的中位線,∴EF∥BC,且EF=$\frac{1}{2}BC$.
又AD=BC,且AD=$\frac{1}{2}BC$,∴AD∥EF且AD=EF,
則四邊形ADEF是平行四邊形.
∴DE∥AF,又DE?面ABP,AF?面ABP,
∴ED∥面PAB;
(Ⅱ)解:法一、取BC的中點(diǎn)M,連接AM,則AD∥MC且AD=MC,
∴四邊形ADCM是平行四邊形,
∴AM=MC=MB,則A在以BC為直徑的圓上.
∴AB⊥AC,可得$AC=\sqrt{3}$.
過D作DG⊥AC于G,
∵平面PAC⊥平面ABCD,且平面PAC∩平面ABCD=AC,
∴DG⊥平面PAC,則DG⊥PC.
過G作GH⊥PC于H,則PC⊥面GHD,連接DH,則PC⊥DH,
∴∠GHD是二面角A-PC-D的平面角.
在△ADC中,$GD=\frac{1}{2}$,連接AE,$GH=\frac{1}{2}AE=\frac{{\sqrt{2}}}{2}$.
在Rt△GDH中,$HD=\frac{{\sqrt{3}}}{2}$,
∴$cos∠GHD=\frac{GH}{HD}=\frac{{\sqrt{6}}}{3}$,
即二面角A-PC-D的余弦值$\frac{{\sqrt{6}}}{3}$.
法二、取BC的中點(diǎn)M,連接AM,則AD∥MC,且AD=MC.
∴四邊形ADCM是平行四邊形,
∴AM=MC=MB,則A在以BC為直徑的圓上,
∴AB⊥AC.
∵面PAC⊥平面ABCD,且平面PAC∩平面ABCD=AC,∴AB⊥面PAC.
如圖以A為原點(diǎn),$\overrightarrow{AC},\overrightarrow{AB}$方向分別為x軸正方向,y軸正方向建立空間直角坐標(biāo)系.
可得$C({\sqrt{3},0,0})$,$D({\frac{{\sqrt{3}}}{2},-\frac{1}{2},0})$.
設(shè)P(x,0,z),(z>0),依題意有$|{PA}|=\sqrt{{x^2}+{z^2}}=\sqrt{3}$,$|{PC}|=\sqrt{{{({x-\sqrt{3}})}^2}+{z^2}}=2$,
解得$x=\frac{{\sqrt{3}}}{3},z=\frac{{2\sqrt{6}}}{3}$.
則$P({\frac{{\sqrt{3}}}{3},0,\frac{{2\sqrt{6}}}{3}})$,$\overrightarrow{DC}=({\frac{{\sqrt{3}}}{2},\frac{1}{2},0})$,$\overrightarrow{CP}=({-\frac{{2\sqrt{3}}}{3},0,\frac{{2\sqrt{6}}}{3}})$.
設(shè)面PDC的一個(gè)法向量為$\overrightarrow{n}=({x}_{0},{y}_{0},{z}_{0})$,
由$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{DC}=\frac{\sqrt{3}}{2}{x}_{0}+\frac{1}{2}{y}_{0}=0}\\{\overrightarrow{n}•\overrightarrow{CP}=-\frac{2\sqrt{3}}{3}{x}_{0}+\frac{2\sqrt{6}}{3}{z}_{0}=0}\end{array}\right.$,取x0=1,得$\overrightarrow n=({1,-\sqrt{3},\frac{{\sqrt{2}}}{2}})$.
$\overrightarrow{AB}$為面PAC的一個(gè)法向量,且$\overrightarrow{AB}=({0,1,0})$,
設(shè)二面角A-PC-D的大小為θ,
則有$cosθ=|{\frac{{\overrightarrow{AB}•\overrightarrow n}}{{|{\overrightarrow{AB}}||{\overrightarrow n}|}}}|=\frac{{\sqrt{6}}}{3}$,即二面角A-PC-D的余弦值$\frac{{\sqrt{6}}}{3}$.
點(diǎn)評(píng) 本題考查直線與平面平行的判定,考查空間想象能力和思維能力,訓(xùn)練了利用空間向量求二面角的平面角,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 36π | B. | 64π | C. | 100π | D. | 104π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1-i | B. | 1+i | C. | -1-i | D. | -1+i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{9}$ | B. | $\frac{4}{9}$ | C. | $\frac{2}{3}$ | D. | 0 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com