如圖,在正方體ABCD-中,點O為底面對角線AC與BD的交點.
(1)求證:BD⊥;
(2)求證:BD⊥平面;
(3)求二面角-BD-的平面角的余弦值.
(1)證明:在正方體ABCD-中,底面ABCD是正方形,∴底面對角線BD⊥AC,易證四邊形是矩形. ∴AC∥,∴BD⊥. (2)證明:∵⊥底面ABCD,且BD底面ABCD,∴BD⊥ 又∵BD⊥AC,AC平面,平面, AC∩=A∴BD⊥平面. (3)設正方體的棱長為a,連結, ∵BD⊥平面平面, 平面,∴BD⊥,BD⊥. ∴∠為二面角的平面角. 由平面幾何知識可知△均為邊長是a的等邊三角形, ∴, ∴在△中,根據余弦定理,有cos∠. 分析(1)由于∥AC,故可以轉化證明BD⊥AC;(2)要證直線與平面垂直,只要證明直線與平面內兩條相交的直線垂直即可;(3)先根據二面角的平面角的作法做出平面角是關鍵,在△⊥BD,故O是棱上選取的最佳點. |
從已知出發(fā)尋找有關的性質定理,再從求證出發(fā)聯想有關的判定定理,把綜合法與分析法結合起來使用,是順利找到證明途徑的有效方法,證明位置關系的一般思路有: 。1)要證線面平行,先證線線平行; 。2)要證面面平行,先證線面平行; 。3)要證線面垂直,先證線線垂直; (4)要證面面垂直,先證線面垂直. |
科目:高中數學 來源: 題型:
1 |
h2 |
1 |
a2 |
1 |
b2 |
1 |
PO2 |
1 |
PA2 |
1 |
PB2 |
1 |
PC2 |
查看答案和解析>>
科目:高中數學 來源: 題型:
1 |
h2 |
1 |
a2 |
1 |
b2 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com