精英家教網 > 高中數學 > 題目詳情

 若定義在R上的奇函數滿足,且在區(qū)間[0,2]上是增函數,則

有                                        

  A.            B.

C.           D.        

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

規(guī)定maxf(x),g(x)=
f(x),f(x)≥g(x)
g(x),f(x)<g(x)
,若定義在R上的奇函數F(x)滿足:當x>0時,F(x)=max1-log2x,1+log2x.
(1)求F(x)的解析式,并寫出F(x)的單調區(qū)間;
(2)若方程F(x)=m有唯一實數解,求實數m的值;
(3)求t>0時,函數y=F(x)在x∈[t,2]上的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

記函數f(x)的定義域為D,若存在x0∈D,使f(x0)=x0成立,則稱以(x0,x0)為坐標的點為函數f(x)圖象上的不動點.
(1)若函數f(x)=
3x+a
x+b
圖象上有兩個關于原點對稱的不動點,求實數a,b應滿足的條件;
(2)設點P(x,y)到直線y=x的距離d=
|x-y|
2
.在(1)的條件下,若a=8,記函數f(x)圖象上的兩個不動點分別為A1,A2,P為函數f(x)圖象上的另一點,其縱坐標yP>3,求點P到直線A1A2距離的最小值及取得最小值時點P的坐標.
(3)下述命題“若定義在R上的奇函數f(x)圖象上存在有限個不動點,則不動點有奇數個”是否正確?若正確,請給予證明;若不正確,請舉一反例.若地方不夠,可答在試卷的反面.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)的定義域為D,若存在x0∈D,使f(x0)=x0成立,則稱以(x0,x0)為坐標的點為函數f(x)圖象上的不動點.
(1)若函數f(x)=
3x+ax+b
圖象上有兩個關于原點對稱的不動點,求a,b應滿足的條件;
(2)在(1)的條件下,若a=8,記函數f(x)圖象上的兩個不動點分別為A、B,點M為函數圖象上的另一點,且其縱坐標yM>3,求點M到直線AB距離的最小值及取得最小值時M點的坐標;
(3)下述命題“若定義在R上的奇函數f(x)圖象上存在有限個不動點,則不動點的有奇數個”是否正確?若正確,給出證明,并舉一例;若不正確,請舉一反例說明.

查看答案和解析>>

科目:高中數學 來源: 題型:

若定義在R上的奇函數f(x)的圖象關于直線x=1對稱,且當0<x≤1時,f(x)=log3x,則方程f(x)+4=f(0)在區(qū)間(0,10)內的所有實根之和為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

下列幾個命題:①直線y=x與函數y=sinx的圖象有3個不同的交點;②函數y=tanx在定義域內是單調遞增函數;③函數y=2x-x2y=(
12
)x-x2
的圖象關于y軸對稱;④若函數y=lg(x2+2x+m)的值域為R,則實數m的取值范圍為(-∞,1];⑤若定義在R上的奇函數f(x)對任意x都有f(x)=f(2-x),則函數f(x)為周期函數.其中正確的命題為
 
(請將你認為正確的所有命題的序號都填上).

查看答案和解析>>

同步練習冊答案